Skip to main content
Log in

Simultaneous determination and uptake assessment of selected radionuclides in plants grown in substrate contaminated with U-mill tailings

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate transfer of 238U, 230Th, 226Ra and 210Pb from substrate contaminated with different amounts of uranium-mill tailings to eatable plants (radish, savoy and rocket). The applied radiochemical procedure allows for simultaneous determination of all investigated nuclides from a single sample test portion. The results obtained indicate significant linear correlation between content of the radionuclides in soil and plants as well as between content of the radionuclides in plants and pedological parameters, while contamination has no effect on photochemical efficiency and content of photosynthetic pigments in the selected plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Križman M, Byrne AR, Benedik L (1995) Distribution of 230Th in milling wastes from the Zirovski vrh uranium mine (Slovenia), and its radioecological implications. J Environ Radioact 26:223–235

    Article  Google Scholar 

  2. Vreček P, Benedik L (2002) Determination of 210Pb and 210Po in sediments, water, and plants in an area contaminated with mine waste. Mine Water Environ 21:156–159

    Article  Google Scholar 

  3. Tamponnet C, Martin-garin A, Gonze M, Parekh N (2008) An overview of BORIS : bioavailability of radionuclides in soils. J Environ Radioact 99:820–830

    Article  CAS  Google Scholar 

  4. Štrok M, Smodiš B (2012) Transfer of natural radionuclides from hay and silage to cow’s milk in the vicinity of a former uranium mine. J Environ Radioact 110C:64–68

    Google Scholar 

  5. Duquène L, Vandenhove H, Tack F, Meers E, Baeten J, Wannijn J (2009) Enhanced phytoextraction of uranium and selected heavy metals by Indian mustard and ryegrass using biodegradable soil amendments. Sci Total Environ 407:1496–1505

    Article  Google Scholar 

  6. Ebbs SD, Brady DJ, Kochian LV (1998) Role of uranium speciation in the uptake and translocation of uranium by plants. Nutrition 49:1183–1190

    CAS  Google Scholar 

  7. Huang JW, Blaylock MJ, Kapulnik Y, Ensley BD (1998) Phytoremediation of uranium-contaminated soils: role of organic acids in triggering uranium hyperaccumulation in plants. Environ Sci Technol 32:2004–2008

    Article  CAS  Google Scholar 

  8. Soudek P, Petrová S, Benesová D, Kotyza J, Vágner M, Vanková R, Vanek T (2010) Study of soil-plant transfer of 226Ra under greenhouse conditions. J Environ Radioact 101:446–450

    Article  CAS  Google Scholar 

  9. Liu D, Jiang W, Liu C, Xin C, Hou W (2000) Uptake and accumulation of lead by roots, hypocotyls and shoots of Indian mustard [Brassica juncea (L.)]. Bioresour Technol 71:273–277

    Article  CAS  Google Scholar 

  10. ATSDR (Agency for Toxic Substances and Disease Registry), toxicological profiles. http://www.atsdr.cdc.gov/. Accessed: 24 Jun 2015

  11. Blaylock MJ, Salt DE, Dushenkob S, Zakharova O, Gussman C, Kapulnik Y, Ensley BD, Raskin I (1997) Enhanced accumulation of Pb in Indian mustard by soil- applied chelating agents. Environ Sci Technol 31:860–865

    Article  Google Scholar 

  12. Yoon J, Cao X, Zhou Q, Ma LQ (2006) Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 368:456–464

    Article  CAS  Google Scholar 

  13. Madruga MJ, Brogueira A, Alberto G, Cardoso F (2001) Ra bioavailability to plants at the Urgeiriça uranium mill tailings site. J Environ Radioact 54:175–188

    Article  CAS  Google Scholar 

  14. Štrok M, Smodiš B (2010) Fractionation of natural radionuclides in soils from the vicinity of a former uranium mine Žirovski vrh, Slovenia. J Environ Radioact 101:22–28

    Article  Google Scholar 

  15. Tomé FV, Vargas MJ, Sánchez AM (1994) Yields and losses at each step in preparing uranium and thorium samples for alpha spectrometry. Appl Radiat Isot 45:449–452

    Article  Google Scholar 

  16. Matveyeva I, Jaćimović R, Planinšek P, Smodiš B, Burkitbayev M (2016) Uptake of uranium, thorium and radium isotopes by plants growing in dam impoundment Tasotkel and the Lower Shu region (Kazakhstan). Radiochim Acta 104:51–57

    Article  CAS  Google Scholar 

  17. Černe M, Smodis B, Štrok M, Jaćimović R (2010) Accumulation of 226Ra, 238U and 230Th by wetland plants in a vicinity of U-mill tailings at Žirovski vrh (Slovenia). J Radioanal Nucl Chem 286:323–327

    Article  Google Scholar 

  18. Rodríguez PB, Tomé FV, Lozano JC (2001) Concerning the low uranium and thorium yields in the electrodeposition process of soil and sediment analyses. Appl Radiat Isot 54:29–33

    Article  Google Scholar 

  19. D’Antuono LF, Elementi S, Neri R (2009) Exploring new potential health-promoting vegetables: glucosinolates and sensory attributes of rocket salads and related Diplotaxis and Eruca species. J Sci Food Agric 89:713–722

    Article  Google Scholar 

  20. Smodiš B, Černe M, Jaćimović R, Benedik L (2015) Transfer of uranium and radium to Chinese cabbage from soil containing elevated levels of natural radionuclides. J Radioanal Nucl Chem 306:685–694

    Article  Google Scholar 

  21. ONORM L 1087 (2006) Chemical analysis of soils-determination of “plant-available” Phosphorus And Potassium By The Calcium-acetate-lactate (cal)-method. Osterreichisches Normungsinstitut

  22. Soil Survey Laboratory Staff (1992) Soil survey laboratory methods manual, U.S. Department of Agriculture

  23. SIST ISO 13878 (1999) Soil quality—determination of total nitrogen content by dry combustion (‘elemental analysis’). http://www.sist.si/ecommerce/catalog/project.aspx?id=557ec62e-84bd-4932-8bfb-a38cad8acf0e. Accessed 14 Aug 2015

  24. SIST ISO 10390 (2006) Soil quality—determination of pH. http://www.sist.si/ecommerce/catalog/project.aspx?id=89661280-0784-40a2-8412-81e4b13cefb4. Accessed 14 Aug 2015

  25. SIST ISO 10694 (1995) Soil quality—determination of organic and total carbon after dry combustion (elementary analysis). http://www.iso.org/iso/catalogue_detail.htm?csnumber=18782. Accessed 14 Aug 2015

  26. Lichtenthaler HK (1988) In: Lichtenthaler HK (ed) Applications of chlorophyll fluorescene in photosynthesis research, stress physiology, hydrobiology and remote sensing. Springer, Dordrecht

    Chapter  Google Scholar 

  27. Schreiber U, Bilger W, Neubauer C (1995) In: Schulze ED, Caldwell MM (eds) Ecophysiology of photosynthesis. Springer, Berlin

    Google Scholar 

  28. Mechora S, Stibilj V, Germ M (2013) The uptake and distribution of selenium in three aquatic plants grown in Se(IV) solution. Aquat Toxicol 128–129:53–59

    Article  Google Scholar 

  29. Hawrylak-Nowak B (2008) Changes in anthocyanin content as indicator of maize sensitivity to selenium. J Plant Nutr 31:1232–1242

    Article  CAS  Google Scholar 

  30. Aggarwal A, Sharma I, Tripathi BN, Munjal A, Baunthiyal M, Sharma V (2012) Metal toxicity and photosynthesis. In: Itoh S, Mohanty P, Guruprasad KN (eds) Photosynthesis: overviews on recent progress & future perspective. IK International Publishing House, New Delhi

    Google Scholar 

  31. Lichtenthaler HK, Buschmann C (2001) Chlorophylls and carotenoids: measurement and characterization by UV-Vis spectroscopy. In: Wrolstad RE, Acree TE, Decker EA, Penner MH, Reid DS, Schwartz SJ, Shoemaker CF, Smith D, Sporns P (eds) Current protocols in food analytical chemistry. John Wiley & Sons Inc, New York

    Google Scholar 

  32. Lichtenthaler HK, Buschmann C (2001) Extraction of phtosynthetic tissues: chlorophylls and carotenoids. In: Wrolstad RE, Acree TE, Decker EA, Penner MH, Reid DS, Schwartz SJ, Shoemaker CF, Smith D, Sporns P (eds) Current protocols in food analytical chemistry. Wiley, New York

    Google Scholar 

  33. Drumm H, Mohr H (1978) Mode of interaction between blue (UV) light pho- toreceptor and phytochrome in anthocyanin formation of Sorghum seedling. Photochem Photobiol 27:241–248

    Article  CAS  Google Scholar 

  34. Štrok M, Smodiš B, Petrinec B (2010) Natural radionuclides in sediments and rocks from Adriatic Sea. J Radioanal Nucl Chem 286:303–308

    Article  Google Scholar 

  35. Benedik L, Tavčar P (2001) Determination of 210Pb and 210Po in environmental samples. Acta Chim Slov 48:199–213

    CAS  Google Scholar 

  36. Horwitz EP (1995) Separation and preconcentration of actinides by extraction chromatography using a supported liquid anion exchanger: application to the characterization of high-level nuclear waste solutions. Anal Chim Acta 310:63–78

    Article  CAS  Google Scholar 

  37. Jurečič S, Benedik L, Planinšek P, Nečemer M, Kump P, Pihlar B (2014) Analysis of uranium in the insoluble residues after decomposition of soil samples by various techniques. Appl Radiat Isot 87:61–65

    Article  Google Scholar 

  38. IAEA (2010) Handbook of parameter values for the prediction of radionuclide transfer in terrestrial and freshwater, no. 472, IAEA (International Atomic Energy Agency), Vienna

  39. Singh S, Malhotra R, Bajwa BS (2005) Uranium uptake studies in some plants. Radiat Meas 40:666–669

    Article  CAS  Google Scholar 

  40. Shtangeeva I (2010) Uptake of uranium and thorium by native and cultivated plants. J Environ Radioact 101:458–463

    Article  CAS  Google Scholar 

  41. Sheppard SC, Evenden WG, Pollock RJ (1989) Uptake of natural radionuclides by field and garden crops. Can J Soil Sci 69:751–767

    Article  CAS  Google Scholar 

  42. Vandenhove H, Van Hees M, Wouters K, Wannijn J (2007) Can we predict uranium bioavailability based on soil parameters? Part 1: effect of soil parameters on soil solution uranium concentration. Environ Pollut 145:587–595

    Article  CAS  Google Scholar 

  43. Bednar AJ, Medina VF, Ulmer-Scholle DS, Frey BA, Johnson BL, Brostoff WN, Larson SL (2007) Effects of organic matter on the distribution of uranium in soil and plant matrices. Chemosphere 70:237–247

    Article  CAS  Google Scholar 

  44. Chang P, Kim KW, Yoshida S, Kim SY (2005) Uranium accumulation of crop plants enhanced by citric acid. Environ Geochem Health 27:529–538

    Article  CAS  Google Scholar 

  45. Rufyikiri G, Wannijn J, Wang L, Thiry Y (2006) Effects of phosphorus fertilization on the availability and uptake of uranium and nutrients by plants grown on soil derived from uranium mining debris. Environ Pollut 141:420–427

    Article  CAS  Google Scholar 

  46. Vandenhove H, Van Hees M (2007) Predicting radium availability and uptake from soil properties. Chemosphere 69:664–674

    Article  CAS  Google Scholar 

  47. Durrance EM (1986) Radioactivity in geology: principles and applications. John Wiley, New York

    Google Scholar 

  48. Wickleder MS, Fourest B, Dorhout PK (2008) In: Morss LR, Edelstein NM, Fuger J, Katz JJ (eds) The chemistry of the actinide and transactinide elements. Springer, Dordrecht

    Google Scholar 

  49. Guo P, Jia X, Duan T, Xu J, Chen H (2010) Influence of plant activity and phosphates on thorium bioavailability in soils from Baotou area, Inner Mongolia. Environ Radioact 101:767–772

    Article  CAS  Google Scholar 

  50. Rodríguez PB, Tomé FV, Lozano JC (2002) About the assumption of linearity in soil-to-plant transfer factors for uranium and thorium isotopes and 226Ra. Sci Total Environ 284:167–175

    Article  Google Scholar 

  51. Pietrzak-Flis Z, Skowrohska-Smolak M (1995) Transfer of 210Pb and 210Po to plants via root system and above-ground interception. Sci Total Environ 162:139–147

    Article  CAS  Google Scholar 

  52. Vaupotič J, Bezek M, Kávási N, Ishikawa T, Yonehara H, Tokonami S (2012) Radon and thoron doses in kindergartens and elementary schools. Radiat Prot Dosim 152:247–252

    Article  Google Scholar 

  53. Veresoglou DS, Barbayiannis N, Matsi T, Anagnostopoulos C, Zalidis GC (1996) Shoot Sr concentrations in relation to shoot Ca concentrations and to soil properties. Plant Soil 178:95–100

    Article  CAS  Google Scholar 

  54. Juneau P, Popovic R (1999) Evidence for the rapid phytotoxicity and environmental stress evaluation using the PAM fluorometric method: importance and future application. Ecotoxicology 8:449–455

    Article  CAS  Google Scholar 

  55. Vanhoudt N, Horemans N, Biermans G, Saenen E, Wannijn J, Nauts R, Van Hees M, Vandenhove H (2014) Uranium affects photosynthetic parameters in Arabidopsis thaliana. Environ Exp Bot 97:22–29

    Article  CAS  Google Scholar 

  56. Kaur G, Singh HP, Batish DR, Kohli RK (2012) Growth, photosynthetic activity and oxidative stress in wheat (Triticum aestivum) after exposure of lead to soil. J Environ Biol 33:265–269

    CAS  Google Scholar 

  57. Dias MC, Monteiro C, Moutinho-Pereira J, Correia C, Gonçalves B, Santos C (2012) Cadmium toxicity affects photosynthesis and plant growth at different levels. Acta Physiol Plant 35:1281–1289

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Slovenian Research Agency (contracts No. P2-0075 and P1-0143). The authors thank Jurana Company for performing pedological analyses. Dr. Špela Mechora from the Biotechnical Faculty, University of Ljubljana, is greatly acknowledged for determining biochemical and physiological parameters of plants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Borut Smodiš.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Planinšek, P., Smodiš, B. & Benedik, L. Simultaneous determination and uptake assessment of selected radionuclides in plants grown in substrate contaminated with U-mill tailings. J Radioanal Nucl Chem 309, 351–365 (2016). https://doi.org/10.1007/s10967-016-4881-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-4881-7

Keywords

Navigation