Skip to main content
Log in

New methodology for uranium analysis in swipe samples for nuclear safeguards purposes

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Environmental swipe sampling for safeguards purpose has been used by International Atomic Energy Agency since 1997, being a powerful tool to detect undeclared materials and activities. This work describes a new methodology for swipe samples analysis based on ultrasound-assisted acid leaching and compares it with traditional total digestion bulk analysis. The proposed method requires few preparation steps, decreasing the risk of contamination, reduced amounts of reagents and a good option to extract uranium from swipe sample. In a real case study, the swipe samples were collected in a conversion plant at IPEN/CNEN, Brazil. The measurements were carried out by ICP-MS and the results showed relative error lower than 0.96 % for uranium isotopic ratios for the certified reference material (NBS U200). The uncertainties were estimated by following the ISO GUM, with a confidence level of 95 %. The uncertainties percentage for n(235U)/n(238U) ratio of the samples ranged from 2.5 to 4.3 %. The values of uranium isotopic ratio obtained for each method demonstrate the viability of using the methodology proposed in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Comissão Nacional de Energia Nuclear (2012) Rio de Janeiro, Brazil. http://www.cnen.gov.br/seguranca/salvaguardas.asp. Accessed 28 Nov 2012

  2. Sturm M. (2010) Esarda Bulletin. n° 45. p 56–65

  3. IAEA (1997) International Atomic Energy Agency Board of Governors, model protocol additional to the agreement(s) between state(s) and the International Atomic Energy Agency for the application of safeguards. IAEA, Vienna. (INFCIRC/540—corrected)

  4. Dai X, Kramer-Tremblay S (2008) J Radioanal Nucl Chem 289:461–466

    Article  Google Scholar 

  5. Donohue DL et al (2008) Appl Surf Sci 255:2561–2568

    Article  CAS  Google Scholar 

  6. Esaka F et al (2004) J Nucl Sci Technol 41(11):1027–1032

    Article  CAS  Google Scholar 

  7. Tamborini G et al (1998) Spectrochimica Acta Part B 53:1289–1302

    Article  Google Scholar 

  8. Becker JS et al (2008) Int J Mass Spectrom 270:1–7

    Article  CAS  Google Scholar 

  9. Saito-Kokubu Y et al (2012) Int J Mass Spectrom 310:52–56

    Article  CAS  Google Scholar 

  10. Donohue DL (1998) J Alloy Compd 271–273:11–18

    Article  Google Scholar 

  11. Godoy MLDP et al (2009) J Environ Radioact 100:613–625

    Article  CAS  Google Scholar 

  12. Lee MH et al (2011) Talanta. doi:10.1016/j.talanta.2011.08.019

    Google Scholar 

  13. Magara M et al (2000) Appl Radiat Isot 53:87–90

    Article  CAS  Google Scholar 

  14. Széles E et al (2010) J Anal At Spectrom 25:1014–1018

    Article  Google Scholar 

  15. Vogt S et al (2006) Bulk analysis of environmental swipe samples. IAEA-SM-367/10/06

  16. Williams RW et al (2005) Purification of U an Pu from bulk environmental samples for analysis by MC-ICPMS. Lawrence Livermore National Laboratory. UCRL-TR-210135

  17. Saliba-Silva AM et al (2008) Fabrication of U3Si2 powder for fuels used in IEA-R1 nuclear research reactor. Mater Sci Forum 591–593:194–199

    Article  Google Scholar 

  18. Scapin MA (2011) J Radioanal Nucl Chem 287:807–811

    Article  CAS  Google Scholar 

  19. Buchmann JH et al (2006) J Radioanal Nucl Chem 270(2):291–298

    Article  CAS  Google Scholar 

  20. Iso GUM (2008) Guide to the expression of uncertainty in measurements, 2nd edn. International Organization for Standardization, Geneva

    Google Scholar 

  21. Marin RC et al (2012) The use of LA-SF-ICP-MS for nuclear forensics purposes: uranium isotope ratio analysis. J Radioanal Nucl Chem. doi:10.1007/s10967-012-1980-y

    Google Scholar 

  22. Kerl W et al (1997) Anal Chem 359:407–409

    Article  CAS  Google Scholar 

  23. Furusawa HA et al (1999) J Radioanal Nucl Chem 242(3):647–651

    Article  CAS  Google Scholar 

  24. Oliveira OP Jr, Sarkis JES (2002) J Radioanal Nucl Chem 253(3):345–350

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael C. B. Pestana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pestana, R.C.B., Sarkis, J.E.S., Marin, R.C. et al. New methodology for uranium analysis in swipe samples for nuclear safeguards purposes. J Radioanal Nucl Chem 298, 621–625 (2013). https://doi.org/10.1007/s10967-013-2467-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-013-2467-1

Keywords

Navigation