Skip to main content
Log in

Processing and characterization of thermoplastic starch/polycaprolactone/compatibilizer ternary blends for packaging applications

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Thermoplastic starch (TPS)/polycaprolactone (PCL) blends were obtained by melt mixing. First, the best formulation of thermoplastic starch (starch, plasticizer and additives) was studied. The obtained films were characterized by means of differential scanning calorimetry, DSC (melting temperature and crystallinity degree); thermogravimetric analysis, TGA (real composition of the blend and thermal stability); tensile tests (mechanical properties); infrared spectroscopy, FTIR (interactions between components); scanning electron microscopy, SEM (morphology); and water absorption tests. The effect of PCL/TPS ratio on the previously mentioned characteristics and properties were studied. In addition, the effect of using PCL modified with maleic anhydride as compatibilizer was also analyzed. An optimal compatibilizer content was found improving the mechanical properties and slowing down the degradation rate in soil of the blends. On the other hand, a slight increase in the water absorption of the blends was found in comparison with the non-compatibilized ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Da Róz AL, Carvalho AJF, Gandini A, Curvelo AAS (2006) The effect of plasticizers on thermoplastic starch compositions obtained by melt processing. Carbohydr Polym 63:417–424

    Article  Google Scholar 

  2. Avérous L, Moro L, Dole P, Fringant C (2000) Properties of thermoplastic blends: starch-polycaprolactone. Polymer (Guildf) 41:4157–4167

    Article  Google Scholar 

  3. Wu C-S (2003) Physical properties and biodegradability of maleated-polycaprolactone/starch composite. Polym Degrad Stab 80:127–134. doi:10.1016/S0141-3910(02)00393-2

    Article  Google Scholar 

  4. Chen L, Ni Y, Bian X et al (2005) A novel approach to grafting polymerization of ε-caprolactone onto starch granules. Carbohydr Polym 60:103–109. doi:10.1016/j.carbpol.2004.11.028

    Article  CAS  Google Scholar 

  5. Buléon A, Colonna P, Planchot V, Ball S (1998) Starch granules: structure and biosynthesis. Int J Biol Macromol 23:85–112. doi:10.1016/s0141-8130(98)00040-3

    Article  Google Scholar 

  6. Matzinos P, Tserki V, Kontoyiannis A, Panayiotou C (2002) Processing and characterization of starch/polycaprolactone products. Polym Degrad Stab 77:17–24. doi:10.1016/S0141-3910(02)00072-1

    Article  CAS  Google Scholar 

  7. Averous L, Moro L, Dole P, Fringant C (2000) Properties of thermoplastic blends: starch–polycaprolactone. Polymer (Guildf) 41:4157–4167. doi:10.1016/S0032-3861(99)00636-9

    Article  CAS  Google Scholar 

  8. Bikiaris D, Prinos J, Koutsopoulos K et al (1998) LDPE/plasticized starch blends containing PE-g-MA copolymer as compatibilizer. Polym Degrad Stab 59:287–291. doi:10.1016/S0141-3910(97)00126-2

    Article  CAS  Google Scholar 

  9. Reis KC, Pereira J, Smith AC et al (2008) Characterization of polyhydroxybutyrate-hydroxyvalerate (PHB-HV)/maize starch blend films. J Food Eng 89:361–369. doi:10.1016/j.jfoodeng.2008.04.022

    Article  CAS  Google Scholar 

  10. Sarazin P, Li G, Orts WJ, Favis BD (2008) Binary and ternary blends of polylactide, polycaprolactone and thermoplastic starch. Polymer (Guildf) 49:599–609. doi:10.1016/j.polymer.2007.11.029

    Article  CAS  Google Scholar 

  11. Marrakchi Z, Oueslati H, Belgacem MN et al (2012) Biocomposites based on polycaprolactone reinforced with alfa fibre mats. Compos Part A Appl Sci Manuf 43:742–747. doi:10.1016/j.compositesa.2011.12.027

    Article  CAS  Google Scholar 

  12. Avella M, Errico ME, Laurienzo P et al (2000) Preparation and characterisation of compatibilised polycaprolactone/starch composites. Polymer (Guildf) 41:3875–3881. doi:10.1016/S0032-3861(99)00663-1

    Article  CAS  Google Scholar 

  13. John J, Tang J, Yang Z, Bhattacharya M (1997) Synthesis and characterization of anhydride-functional polycaprolactone. J Polym Sci Part A Polym Chem 35:1139–1148. doi:10.1002/(sici)1099-0518(19970430)35:6<1139::aid-pola17>3.0.co;2-7

    Article  CAS  Google Scholar 

  14. Yam WY, Ismail J, Kammer HW et al (1999) Polymer blends of poly(ϵ-caprolactone) and poly(vinyl methyl ether) – thermal properties and morphology. Polymer (Guildf) 40:5545–5552. doi:10.1016/S0032-3861(98)00807-6

    Article  CAS  Google Scholar 

  15. Lourdin D, Coignard L, Bizot H, Colonna P (1997) Influence of equilibrium relative humidity and plasticizer concentration on the water content and glass transition of starch materials. Polymer (Guildf) 38:5401–5406

    Article  CAS  Google Scholar 

  16. Soares RMD, Lima AMF, Oliveira RVB et al (2005) Thermal degradation of biodegradable edible films based on xanthan and starches from different sources. Polym Degrad Stab 90:449–454. doi:10.1016/j.polymdegradstab.2005.04.007

    Article  CAS  Google Scholar 

  17. Canché-Escamilla G, Canché-Canché M, Duarte-Aranda S et al (2011) Mechanical properties and biodegradation of thermoplastic starches obtained from grafted starches with acrylics. Carbohydr Polym 86:1501–1508. doi:10.1016/j.carbpol.2011.06.052

    Article  Google Scholar 

  18. Wilhelm HM, Sierakowski MR, Souza GP, Wypych F (2003) Starch films reinforced with mineral clay. Carbohydr Polym 52:101–110

    Article  CAS  Google Scholar 

  19. Janković B (2013) Thermal characterization and detailed kinetic analysis of Cassava starch thermo-oxidative degradation. Carbohydr Polym 95:621–9. doi:10.1016/j.carbpol.2013.03.038

    Article  Google Scholar 

  20. Guinesi LS, da Róz AL, Corradini E et al (2006) Kinetics of thermal degradation applied to starches from different botanical origins by non-isothermal procedures. Thermochim Acta 447:190–196. doi:10.1016/j.tca.2006.06.002

    Article  CAS  Google Scholar 

  21. Prachayawarakorn J, Ruttanabus P, Boonsom P (2010) Effect of cotton fiber contents and lengths on properties of thermoplastic starch composites prepared from rice and waxy rice starches. J Polym Environ 19:274–282. doi:10.1007/s10924-010-0273-1

    Article  Google Scholar 

  22. Prachayawarakorn J, Chaiwatyothin S, Mueangta S, Hanchana A (2013) Effect of jute and kapok fibers on properties of thermoplastic cassava starch composites. Mater Des 47:309–315. doi:10.1016/j.matdes.2012.12.012

    Article  CAS  Google Scholar 

  23. Velasquez D, Pavon-Djavid G, Chaunier L et al (2015) Effect of crystallinity and plasticizer on mechanical properties and tissue integration of starch-based materials from two botanical origins. Carbohydr Polym 124:180–187. doi:10.1016/j.carbpol.2015.02.006

    Article  CAS  Google Scholar 

  24. Valderrama Solano AC, Rojas de Gante C (2014) Development of biodegradable films based on blue corn flour with potential applications in food packaging. Effects of plasticizers on mechanical, thermal, and microstructural properties of flour films. J Cereal Sci 60:60–66. doi:10.1016/j.jcs.2014.01.015

    Article  CAS  Google Scholar 

  25. Jost V, Kobsik K, Schmid M, Noller K (2014) Influence of plasticiser on the barrier, mechanical and grease resistance properties of alginate cast films. Carbohydr Polym 110:309–19. doi:10.1016/j.carbpol.2014.03.096

    Article  CAS  Google Scholar 

  26. Kalambur S, Rizvi SSH (2006) An overview of starch-based plastic blends from reactive extrusion. J Plast Film Sheeting 22:39–58

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Scientific and Technical Research Council (CONICET), the National Agency of Science and Technology (ANPCyT) [Fonarsec FSNano004], and the National University of Mar del Plata (UNMdP) [15G327].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Ludueña.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guarás, M.P., Alvarez, V.A. & Ludueña, L.N. Processing and characterization of thermoplastic starch/polycaprolactone/compatibilizer ternary blends for packaging applications. J Polym Res 22, 165 (2015). https://doi.org/10.1007/s10965-015-0817-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-015-0817-0

Keywords

Navigation