Skip to main content
Log in

Shape memory effect for recovering surface damages on polymer substrates

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Self-repair properties based on shape-memory features of covalently crosslinked semi-crystalline polyalkenamers were demonstrated by thermal-activated recovery of performed surface marks (indented holes and scratches). Shape memory polymers were prepared by mixing a commercial polycyclooctene (PCO) with different percentages of peroxide, and then these mixtures were processed by compression moulding to obtain crosslinked sheets. With the aid of a hardness test pencil, holes and scratches in the surface of the materials were realized with different known forces (5, 10 and 15 N). The disappearance of surface defects was evaluated using both optical and contact surface profilometry, as well as optical microscopy under heating processes. This technique allowed evaluating shape recovery ratios of edgewise holes in PCO samples. In parallel, the analysis of maximum depth of indentations with temperature for edgewise samples by optical microscopy allows evaluating shape recovery. As a complementary tool for analysing thermal shape-recovery and surface resistance to indentation, thermal properties and hardness were investigated by DSC and Shore durometer test, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Schmets AJM, van der Zaken G, van der Zwaag S (2007) Self healing materials: an alternative approach to 20 centuries of materials science. Springer, Dordrecht

    Google Scholar 

  2. Wu DY, Meure S, Solomon D (2008) Self-healing polymeric materials: A review of recent developments. Prog Polym Sci 33:479–522. doi: http://dx.doi.org/10.1016/j.progpolymsci.2008.02.001

  3. White SR, Sottos NR, Geubelle PH et al (2001) Autonomic healing of polymer composites. Nature 409:794–797. doi:10.1038/35057232

    Article  CAS  Google Scholar 

  4. Rule JD, Brown EN, Sottos NR et al (2005) Wax-protected catalyst microspheres for efficient self-healing materials. Adv Mater 17:205–208. doi:10.1002/adma.200400607

    Article  CAS  Google Scholar 

  5. Cho SH, Andersson HM, White SR et al (2006) Polydimethylsiloxane-based self-healing materials. Adv Mater 18:997–1000. doi:10.1002/adma.200501814

    Article  CAS  Google Scholar 

  6. Gupta S, Zhang Q, Emrick T et al (2006) Entropy-driven segregation of nanoparticles to cracks in multilayered composite polymer structures. Nat Mater 5:229–233. doi:10.1038/nmat1582

    Article  Google Scholar 

  7. Kolmakov GV, Matyjaszewski K, Balazs AC (2009) Harnessing labile bonds between nanogel particles to create self-healing materials. ACS Nano 3:885–892. doi:10.1021/nn900052h

    Article  CAS  Google Scholar 

  8. Toohey KS, Sottos NR, Lewis JA, et al. (2007) Self-healing materials with microvascular networks. Nat Mater 6:581–585. doi:http://www.nature.com/nmat/journal/v6/n8/suppinfo/nmat1934_S1.html

  9. Toohey KS, Hansen CJ, Lewis JA et al (2009) Delivery of Two-part self-healing chemistry via microvascular networks. Adv Funct Mater 19:1399–1405. doi:10.1002/adfm.200801824

    Article  CAS  Google Scholar 

  10. Hansen CJ, Wu W, Toohey KS et al (2009) Self-healing materials with interpenetrating microvascular networks. Adv Mater 21:4143–4147. doi:10.1002/adma.200900588

    Article  CAS  Google Scholar 

  11. South AB, Lyon LA (2010) Autonomic self-healing of hydrogel thin films. Angew Chemie 122:779–783. doi:10.1002/ange.200906040

    Article  Google Scholar 

  12. Mukhopadhyay P, Fujita N, Takada A et al (2010) Regulation of a real-time self-healing process in organogel tissues by molecular adhesives. Angew Chemie Int Ed 49:6338–6342. doi:10.1002/anie.201001382

    Article  CAS  Google Scholar 

  13. Amamoto Y, Kamada J, Otsuka H et al (2011) Repeatable photoinduced self-healing of covalently cross-linked polymers through reshuffling of trithiocarbonate units. Angew Chemie 123:1698–1701. doi:10.1002/ange.201003888

    Article  Google Scholar 

  14. He L, Fullenkamp DE, Rivera JG, Messersmith PB (2011) pH responsive self-healing hydrogels formed by boronate – catechol complexation. Chem Commun 47:7497–7499. doi:10.1039/c1cc11928a

    Article  CAS  Google Scholar 

  15. Lai S-M, Lan Y-C (2013) Shape memory properties of melt-blended polylactic acid (PLA)/thermoplastic polyurethane (TPU) bio-based blends. J Polym Res 20:1–8. doi:10.1007/s10965-013-0140-6

    Article  Google Scholar 

  16. Schmidt C, Sarwaruddin Chowdhury AM, Neuking K, Eggeler G (2011) Thermo-mechanical behaviour of shape memory polymers, e.g., tecoflex® by 1WE method: SEM and IR analysis. J Polym Res 18:1807–1812. doi:10.1007/s10965-011-9587-5

    Article  CAS  Google Scholar 

  17. Revathi A, Rao S, Rao KV (2013) Effect of strain on the thermomechanical behavior of epoxy based shape memory polymers. J Polym Res 20:113. doi:10.1007/s10965-013-0113-9

    Article  Google Scholar 

  18. Biju R, Nair CPR (2013) Synthesis and characterization of shape memory epoxy-anhydride system. J Polym Res 20:1–11. doi:10.1007/s10965-013-0082-z

    Article  CAS  Google Scholar 

  19. Kavitha, Revathi A, Rao S et al (2012) Characterization of shape memory behaviour of CTBN-epoxy resin system. J Polym Res 19:1–7. doi:10.1007/s10965-012-9894-5

    Article  CAS  Google Scholar 

  20. Lendlein A, Kelch S (2002) Shape-memory polymers. Angew Chemie Int Ed 41:2034–2057. doi:10.1002/1521-3773(20020617)41:12<2034::aid-anie2034>3.0.co;2-m

    Article  CAS  Google Scholar 

  21. Liu C, Qin H, Mather PT (2007) Review of progress in shape-memory polymers. J Mater Chem 17:1543–1558. doi:10.1039/b615954k

    Article  CAS  Google Scholar 

  22. Amirian M, Nabipour Chakoli A, Sui J, Cai W (2012) Enhanced shape memory effect of poly(L-lactide-co-ε-caprolactone) biodegradable copolymer reinforced with functionalized MWCNTs. J Polym Res 19:1–10. doi:10.1007/s10965-011-9777-1

    Article  CAS  Google Scholar 

  23. El Feninat F, Laroche G, Fiset M, Mantovani D (2002) Shape memory materials for biomedical applications. Adv Eng Mater 4:91–104. doi:10.1002/1527-2648(200203)4:3<91::AID-ADEM91>3.0.CO;2-B

    Article  Google Scholar 

  24. Wang Y, Zhu G, Tang Y et al (2014) Mechanical and shape memory behavior of chemically cross-linked SBS/LDPE blends. J Polym Res 21:1–10. doi:10.1007/s10965-014-0405-8

    Google Scholar 

  25. Alonso-Villanueva J, Cuevas JM, Laza JM et al (2010) Synthesis of poly(cyclooctene) by ring-opening metathesis polymerization: characterization and shape memory properties. J Appl Polym Sci 115:2440–2447. doi:10.1002/app.29394

    Article  CAS  Google Scholar 

  26. Xie T (2011) Recent advances in polymer shape memory. Polymer 52:4985–5000. doi: http://dx.doi.org/10.1016/j.polymer.2011.08.003

  27. Rodriguez ED, Luo X, Mather PT (2011) Linear/network poly(ε-caprolactone) blends exhibiting shape memory assisted self-healing (SMASH). ACS Appl Mater Interfaces 3:152–161. doi:10.1021/am101012c

    Article  CAS  Google Scholar 

  28. Wang W, Jin Y, Ping P et al (2010) Structure evolution in segmented poly(ester urethane) in shape-memory process. Macromolecules 43:2942–2947. doi:10.1021/ma902781e

    Article  CAS  Google Scholar 

  29. Ping P, Wang W, Chen X, Jing X (2005) Poly(ε-caprolactone) polyurethane and its shape-memory property. Biomacromolecules 6:587–592. doi:10.1021/bm049477j

    Article  Google Scholar 

  30. Xiao X, Xie T, Cheng Y-T (2010) Self-healable graphene polymer composites. J Mater Chem 20:3508–3514. doi:10.1039/c0jm00307g

    Article  CAS  Google Scholar 

  31. Li G, Nettles D (2010) Thermomechanical characterization of a shape memory polymer based self-repairing syntactic foam. Polymer 51:755–762. doi:10.1016/j.polymer.2009.12.002

    Article  CAS  Google Scholar 

  32. Cuevas JM, Laza JM, Rubio R et al (2011) Development and characterization of semi-crystalline polyalkenamer based shape memory polymers. Smart Mater Struct 20:035003/1–035003/9. doi:10.1088/0964-1726/20/3/035003

    Article  CAS  Google Scholar 

  33. Khonakdar HA, Jafari SH, Rasouli S et al (2007) Investigation and modeling of temperature dependence recovery behavior of shape-memory crosslinked polyethylene. Macromol Theory Simul 16:43–52. doi:10.1002/mats.200600041

    Article  CAS  Google Scholar 

  34. Rezanejad S, Kokabi M (2007) Shape memory and mechanical properties of cross-linked polyethylene/clay nanocomposites. Eur Polym J 43:2856–2865. doi: http://dx.doi.org/10.1016/j.eurpolymj.2007.04.031

  35. Li F, Zhu W, Zhang X et al (1999) Shape memory effect of ethylene–vinyl acetate copolymers. J Appl Polym Sci 71:1063–1070. doi:10.1002/(sici)1097-4628(19990214)71:7<1063::aid-app4>3.0.co;2-a

    Article  CAS  Google Scholar 

  36. Liu C, Chun SB, Mather PT et al (2002) Chemically cross-linked polycyclooctene: synthesis, characterization, and shape memory behavior. Macromolecules 35:9868–9874. doi:10.1021/ma021141j

    Article  CAS  Google Scholar 

  37. Liu C, Mather PT (2002) Thermomechanical characterization of a tailored series of shape memory polymers. J Appl Med Polym 6:47–52

    CAS  Google Scholar 

  38. Mather PT, Liu C, Chun SB, Coughlin EB (2007) Patent US7173096 B2

  39. Lendlein A (2007) Pat. WO 2007/060022 A1

  40. Cuevas JM, Rubio R, Laza JM et al (2012) Shape memory composites based on glass-fibre-reinforced poly(ethylene)-like polymers. Smart Mater Struct 21:035004/1–035004/9. doi:10.1088/0964-1726/21/3/035004

    Article  CAS  Google Scholar 

  41. Cuevas JM, Alonso J, German L, et al. (2009) Magneto-active shape memory composites by incorporating ferromagnetic microparticles in a thermo-responsive polyalkenamer. Smart Mater Struct 18:075003/1–075003/10. doi: 10.1088/0964-1726/18/7/075003

  42. Cuevas JM, Rubio R, German L et al (2012) Triple-shape memory effect of covalently crosslinked polyalkenamer based semicrystalline polymer blends. Soft Matter 8:4928–4935. doi:10.1039/c2sm07481h

    Article  CAS  Google Scholar 

  43. Céspedes RIN, Gámez JFH, Velázquez MGN et al (2014) Thermoplastic elastomers based on high-density polyethylene, ethylene–propylene–diene terpolymer, and ground tire rubber dynamically vulcanized with dicumyl peroxide. J Appl Polym Sci 131:39901/1–39901/8. doi:10.1002/app.39901

    Article  Google Scholar 

  44. Nakayama K, Watanabe T, Ohtake Y, Furukawa M (2008) Influence of residual peroxide on the degradation of peroxide-crosslinked ethylene–propylene–diene rubber. J Appl Polym Sci 108:2578–2586. doi:10.1002/app.27894

    Article  CAS  Google Scholar 

  45. Baltá-Calleja EJ, Kilian HG (1985) A novel concept in describing elastic and plastic properties of semicrystalline polymers: polyethylene. Colloid Polym Sci 263:697–707. doi:10.1007/BF01422850

    Article  Google Scholar 

  46. Deslandes Y, Rosa EA, Brisse F, Meneghini T (1991) Correlation of micro hardness and morphology of poly (ether-ether-ketone) films. J Mater Sci 26:2769–2777. doi:10.1007/BF00545567

    Article  CAS  Google Scholar 

  47. Calleja FJB, Salazar JM, Čačković H, Loboda-Čačković J (1981) Correlation of hardness and microstructure in unoriented lamellar polyethylene. J Mater Sci 16:739–751. doi:10.1007/BF02402791

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Basque Country Government (ACTIMAT project from ETORTEK programme) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Manuel Laza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Huete, N., Laza, J.M., Cuevas, J.M. et al. Shape memory effect for recovering surface damages on polymer substrates. J Polym Res 21, 481 (2014). https://doi.org/10.1007/s10965-014-0481-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-014-0481-9

Keywords

Navigation