Skip to main content
Log in

Equal-channel angular extrusion of polymers

  • Review Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

One of the priority lines of development of physics of polymers and material science is the development of the principles of structure modification of polymeric materials and the study of the relation between the structure and the properties, aimed to their control. Nowadays, great attention is paid to investigation of severe plastic deformation (SPD) effect on the structure modification of polymers and polymeric composites as well as to the development of the simple shear based methods of formation of orientation order. The main difference between SPD and traditional methods of pressure shaping such as die extrusion, rolling, drawing is the ability to accumulate essential plastic deformation in the processed materials. At the same time, the billet form and size are maintained and there is a possibility of development of varied deformation routes in order to generate different forms of molecular orientation. The most widely used SPD methods applied to polymeric materials are equal-channel angular extrusion (ECAE) and its modified version, so-called equal-channel multiple angular extrusion (ECMAE). The investigations carried out in research centers of USA, Japan, China, France and Ukraine showed perspectives of the use of these methods for improvement of the set of the existing physical and mechanical properties and the formation of functional properties previously unknown. In particular, in the case of semi-crystalline polymers, SPD results in increase in rigidity and strength at conserved high level of plasticity. For polymeric composites, SPD facilitates homogeneous distribution and better dispersion of the filler particles within the polymeric matrix, orientation of transition layers and polymeric matrix etc. As a result, physical and mechanical characteristics higher of those of polymeric composites without SPD were achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Segal VM (1999) Equal channel angular extrusion: from macromechanics to structure formation. J Mater Sci Eng 271A:322–333

    Article  Google Scholar 

  2. Nakashima K, Horita Z, Nemoto M, Langdon TG (2000) Development of a multi-pass facility for equal channel angular pressing to high total strains. Mater Sci Eng 281A:82–87

    Article  Google Scholar 

  3. Valiev RZ, Langdon TG (2006) Developments in the use of ECAP processing for grain refinement. Rev Adv Mater Sci 13:15–26

    CAS  Google Scholar 

  4. Rosochowski A, Olejnik L, Rechert M (2006) Channel configuration effects in 3D-ECAP. Mater Sci Forum 503–504:179–184

    Article  Google Scholar 

  5. Nagarajan D, Chakkingal U, Venugopal P (2007) Influence of cold extrusion on the microstructure and mechanical properties of an aluminum alloy previously subjected to equal channel angular pressing. J Mater Proc Technol 182:363–368

    Article  CAS  Google Scholar 

  6. Sue H-J, Li CK-Y (1998) Control of orientation of lamellar structure in linear low density polyethylene via a novel equal channel angular extrusion process. J Mater Sci Lett 17:853–856

    Article  CAS  Google Scholar 

  7. Beygelzimer YE, Beloshenko VA (2004) Solid-state extrusion. In: Kroschewitz JI (ed) Encylopedia of polymer science and technology. Koboken, New Jersey, pp 850–866

    Google Scholar 

  8. Beloshenko VA, Varyukhin VN, Voznyak AV, Voznyak YV (2010) Equal-channel multiangular extrusion of semicrystalline polymers. Polym Eng Sci 50:1000–1006

    Article  CAS  Google Scholar 

  9. Beloshenko VA, Beygelzimer YE, Varyukhin VN (2008) Solid-phase extrusion of polymers. Naukova dumka, Kiyv (in Russian)

    Google Scholar 

  10. Beloshenko VA, Varyukhin VN, Voznyak AV, Voznyak YV (2009) Solid-phase extrusion of polyamide under simple shear. Polym Sci 51A:916–922

    Article  Google Scholar 

  11. Cambell B, Edward G (1999) Equal-channel angular extrusion of polyalkine. Plast Rubber Compos 28:467–475

    Google Scholar 

  12. Wang T, Tang S, Chen J (2011) Effect of processing route on morphology and mechanical behavior of polypropylene in equal-channel angular extrusion. J Appl Polym Sci 122:2146–2158

    Article  CAS  Google Scholar 

  13. Bartczak Z, Argon AS, Cohen RE (1994) Texture evolution in large strain simple shear deformation of high density polyethylene. Polymer 35:3427–3441

    Article  CAS  Google Scholar 

  14. Philips A, Zhu P, Edwards GE (2006) Simple shear deformation of polypropylene via the equal-channel angular extrusion process. Macromolecules 39:5796–5803

    Article  Google Scholar 

  15. Qiu J, Murata T, Wu X, Kitagawa M, Kudo M (2012) Plastic deformation mechanism of crystalline polymer materials in the equal-channel angular extrusion process. J Mater Proc Techn 212:1528–1536

    Article  CAS  Google Scholar 

  16. Xia Z-Y, Sue H-J, Rieker TP (2000) Morphological evolution of poly(ethylene terephthalate) during equal-channel angular extrusion process. Macromolecules 33:8746–8755

    Article  CAS  Google Scholar 

  17. Xia Z, Sue H-J, Hsieh AJ, Huang JW-L (2001) Dynamic mechanical behavior of oriented semicrystalline polyethylene terephthalate. J Polym Phys 39B:1394–1403

    Article  Google Scholar 

  18. Wang Z-G, Xia Z-Y, Yu Z-Q, Chen E-Q, Sue H-J, Han CC, Hsiao BS (2006) Lamellar formation and relaxation in simple sheared poly(ethylene terephthalate) by small-angle X-ray scattering. Macromolecules 39:2930–2939

    Article  CAS  Google Scholar 

  19. Xia Z, Hartwing T, Sue H-J (2004) Mechanical behavior of bulk poly(ethylene terephthalate) subjected to simple shear. J Macromol Sci 43B:385–403

    Google Scholar 

  20. Ma J, Simon GP, Edward GH (2008) The effect of shear deformation on nylon-6 and two types of nylon-6/clay nanocomposite. Macromolecules 41:409–420

    Article  CAS  Google Scholar 

  21. Cui H, Zhang L, Gong J, Ma Y, Ying W (2006) Reinforcement of biodegradable poly(DL-lactic acid) material by equal-channel angular extrusion. Macromol Symp 242:55–59

    Article  CAS  Google Scholar 

  22. Beloshenko VA, Varyukhin VN, Voznyak AV, Voznyak YV (2009) New methods of solid-phase modification of polymers by simple-shear deformation. Doklady Phys Chem 426:81–83

    Article  CAS  Google Scholar 

  23. Beloshenko VA, Varyukhin VN, Voznyak AV, Voznyak YV (2011) Solid-phase extrusion of polyamide-6 by using combined deformation schemes. Polym Eng Sci 51:1092–1098

    Article  CAS  Google Scholar 

  24. Beloshenko VA, Voznyak AV, Voznyak YV, Glasunova VA, Konstantinova TE (2012) “Polyamide-6 structure modification by combined solid-phase extrusion’. Polym Eng Sci 52:1815–1820

    Article  CAS  Google Scholar 

  25. Kozlov HV, Beloshenko VO, Aloiev VZ, Varyukhin VM (2000) Microhardness of extruded polyethylene and the composite. Mater Sci 36:98–101

    Google Scholar 

  26. Beloshenko VA, Voznyak AV, Voznyak YV, Dudarenko GV (2013) Equal-channel multiple angular extrusion of polyethelene. J Appl Polym Sci 127:1377–1386

    Article  CAS  Google Scholar 

  27. Beloshenko VA, Varyukhin VN, Voznyak AV, Voznyak YV (2012) Polyoxymethylene orientation by equal-channel multiple angular extrusion. J Appl Polym Sci 126:837–844

    Article  CAS  Google Scholar 

  28. Beloshenko VA, Voznyak AV, Voznyak YV (2011) Modification of polyamide-6 structure by combined methods of solid-phase extrusion. High Pres Res 31:153–157

    Article  CAS  Google Scholar 

  29. Xia K, Wu X, Honma T, Ringer SP (2007) Ultrafine pure aluminium through back pressure equal channel angular consolidation (BP-ECAC) of particles. J Mater Sci 42:1551–1560

    Article  CAS  Google Scholar 

  30. Al-Goussous S, Wu X, Yuan Q, Xia K (2007) Back pressure equal channel angular consolidation of nylon 12. Mater Forum 31:36–38

    CAS  Google Scholar 

  31. Pat. US2012/0178892A1 Angular extrusion for polymer consolidation/Douglas W. Van Citters – Publ. 12.06.2012.

  32. Zhang X, Gao D, Wu X, Xia K (2008) Bulk plastic materials obtained from processing raw powder of renewable natural polymers via back pressure equal-channel angular consolidation (BP-ECAC). Europ Polym J 44:780–792

    Article  CAS  Google Scholar 

  33. Zhang X, Wu X, Gao D, Xia K (2012) Bulk cellulose plastic materials from processing cellulose powder using back pressure-equal channel angular pressing. Carbohydrate Polym 87:2470–2476

    Article  CAS  Google Scholar 

  34. Weon JI, Creasy TS, Sue H-J, Hsieh AJ (2005) Mechanical behavior of polymethylmethacrylate with molecules oriented via simple shear. Polym Eng Sci 45:314–324

    Article  CAS  Google Scholar 

  35. Xia Z, Sue H-J, Hsieh AJ (2001) Impact fracture behavior of molecularly oriented polycarbonate sheets. J Appl Polym Sci 79:2060–2066

    Article  CAS  Google Scholar 

  36. Li CK, Xia Z-H, Sue H-J (2000) Simple shear plastic deformation behavior of polycarbonate plate. II. Mechanical property characterization. Polymer 41:6285–6293

    Article  CAS  Google Scholar 

  37. Yoshioka S, Tsukamoto K (2009) Effect of ECAE on plastic deformation behavior of glassy polymers. Jpn Soc Mater Sci 58:29–34

    Article  CAS  Google Scholar 

  38. Creasy TS, Kang YS (2004) Fiber orientation during equal channel angular extrusion of short fiber reinforced. J Thermoplast Compos Mater 17:205–227

    Article  Google Scholar 

  39. Creasy TS, Kang YS (2005) Fiber fracture during equal-channel angular extrusion of short fiber-reinforced thermoplastics. J Mater Proc Techn 160:90–98

    Article  CAS  Google Scholar 

  40. Weon JI, Sue H-J (2005) Effect of clay orientation and aspect ratio on mechanical behavior of nylon-6 nanocomposite. Polymer 46:6325–6334

    Article  CAS  Google Scholar 

  41. Weon JI, Xia Z-Y, Sue H-J (2005) Morphological characterization of nylon-6 nanocomposite following a large-scale simple shear process. J Polym Sci 43B:3555–3566

    Article  Google Scholar 

  42. Li H, Huang X, Huang C, Zhao Y (2012) An investigation about solid equal-channel angular extrusion. J Appl Polym Sci 123:2222–2227

    Article  CAS  Google Scholar 

  43. Li H, Huang C, Huang X (2013) Structure and properties of polypropylene/high-density polyethylene blends by solid equal-channel angular extrusion. J Appl Polym Sci. doi:10.1002/APP.39759

    Google Scholar 

  44. Segal VM, Reznikov VI, Drobyshevskiy AE, Kopylov VI (1981) Plastic working of metals by simple shear. Russ Metall 1:99–105, English translation

    Google Scholar 

  45. Iwahashi Y, Wang J, Horita Z, Nemoto M, Langdon TG (1996) Principle of equal-channel angular pressing for the processing of ultra-fine grained materials. Scripta Mater 35:143–146

    Article  CAS  Google Scholar 

  46. Segal VM (2003) . Slip line solutions, deformation mode and loading history during equal channel angular extrusion. Mater Sci Eng 345A:36–46

    Article  Google Scholar 

  47. Beyerlein IJ, Tome CN (2004) Analytical modeling of material flow in equal channel angular extrusion (ECAE). Mater Sci Eng 380A:171–190

    Article  Google Scholar 

  48. Aour B, Zairi F, Gloaguen JM, Nait-Abdelaziz M, Lefebvre JM (2006) Numerical investigation on equal channel angular extrusion process of polymers. Comput Mater Sci 37:491–506

    Article  CAS  Google Scholar 

  49. Zairi F, Aour B, Gloaguen JM, Nait-Abdelaziz M, Lefebvre JM (2006) Numerical modeling of elastic-viscoelastic equal channel angular extrusion process of a polymer. Comput Mater Sci 38:202–216

    Article  CAS  Google Scholar 

  50. Zairi F, Aour B, Gloaguen JM, Nait-Abdelaziz M, Lefebvre JM (2007) Influence of the initial yield strain magnitude on the materials flow in equal channel angular extrusion process. Scripta materialia 56:105–108

    Article  Google Scholar 

  51. Aour B, Zairi F, Nait-Abdelaziz M, Gloaguen JM, Ahmani OR, Lefebvre JM (2008) A computational study of die geometry and processing conditions effects on equal channel angular extrusion of a polymer. Int J Mechan Sci 50:589–602

    Article  Google Scholar 

  52. Zairi F, Aour B, Gloaguen JM, Nait-Abdelaziz M, Lefebvre JM (2008) Steady plastic flow of a polymer during equal channel angular extrusion process: experimental and numerical modeling. Polym Eng Sci 48:1015–1021

    Article  CAS  Google Scholar 

  53. Aour B, Zairi F, Boulahia M, Nait-Abdelaziz M, Gloaguen JM, Lefebvre JM (2009) Experimental and numerical study ECAE deformation of polyolefins. Comput Mater Sci 45:646–652

    Article  CAS  Google Scholar 

  54. Aour B, Zairi F, Nait-Abdelaziz M, Gloaguen JM, Lefebvre JM (2009) Finite element analysis of plastic strain distribution in multipass equal channel angular extrusion process of HDPE. J Manuf Sci Eng 131:524–534

    Google Scholar 

  55. Aour B, Zairi F, Nait-Abdelaziz M, Gloaguen JM, Lefebvre JM (2010) Analysis of polypropylene deformation in a 135° equal channel angular extrusion die: experiments and three-dimensional finite element simulation. Key Eng Mater 71

  56. Beloshenko VA, Voznyak YV, Voznyak AV (2010) Semicrystalline polymers. Properties after equal-channel multiple-angular extrusion. Chem Ind Ukraine 1:42–44 (in Russian)

    Google Scholar 

  57. Sue H-J, Dilan H, Li CK-Y (1999) Simple shear plastic deformation behavior of polycarbonate plate due to the equal channel angular extrusion process. I: finite element methods modeling. Polym Eng Sci 39:2505–2515

    Article  CAS  Google Scholar 

  58. Semiatin SL, Delo DP, Shell EB (2000) The effect of material properties and tooling design on deformation and fracture during equal channel angular extrusion. Acta Mater 48:1841–1851

    Article  CAS  Google Scholar 

  59. Bowen JR, Gholinia A, Roberts SM, Prangnell PB (2000) Analysis of the billet deformation behaviour in equal channel angular extrusion. Mater Sci Eng 287A:87–99

    Article  Google Scholar 

  60. Oh SJ, Kang SB (2003) Analysis of the billet deformation during equal channel angular pressing. Mater Sci Eng 343A:107–115

    Article  Google Scholar 

  61. Son IH, Lee JH, Im YT (2006) Finite element investigation of equal channel angular extrusion with back pressure. J Mater Proc Tech 171:480–487

    Article  CAS  Google Scholar 

  62. Boulahia R, Gloaguen JM, Zaïri F, Naït-Abdelaziz M, Seguela R, Boukharouba T, Lefebvre JM (2009) Deformation behaviour and mechanical properties of polypropylene processed by equal channel angular extrusion: effects of back-pressure and extrusion velocity. Polymer 50:5508–5517

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Beloshenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beloshenko, V.A., Voznyak, Y.V., Reshidova, I.Y. et al. Equal-channel angular extrusion of polymers. J Polym Res 20, 322 (2013). https://doi.org/10.1007/s10965-013-0322-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0322-2

Keywords

Navigation