Skip to main content

Advertisement

Log in

Determinants and public policy implications of academic-industry knowledge transfer in life sciences: a review and a conceptual framework

  • Published:
The Journal of Technology Transfer Aims and scope Submit manuscript

Abstract

There is a considerable interest of scholars in benefits and challenges arising from involvement of academic researchers and their institutions in knowledge transfer activities with the business sector. The emerging questions have resulted in a number of studies, yielding rich but mixed findings. The purpose of this paper is to systematically review this body of investigative work, with a particular emphasis on life sciences. Based on the systematic analysis and synthesis of 135 articles published between 1980 and 2014, we discuss the most interesting findings for each of the six identified principal academic-industry research topics: involvement predictors and motivators, role of incentives, institutional performance determinants, knowledge transfer institutionalization, relationship with scientific output and impact on open science. Whereas many studies reach consensus regarding the particular personal and contextual predictors of researchers’ knowledge transfer involvement, we also find substantial evidence that depending on empirical setting, variables such as scientific productivity and institutional technology transfer support policies can act both as enablers and inhibitors in the process. We find no straightforward evidence regarding the role of the size, age and structure of technology transfer offices in the knowledge transfer performance of academic institutions. We also show that most studies agree that engagement in knowledge transfer activities does not negatively affect the researchers’ scientific output. Yet, it is less clear to what extent university-industry interactions can be detrimental for the norms of open science. We draw several policy implications for academic settings and emphasize interesting avenues for further research in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abreu, M., & Grinevich, V. (2013). The nature of academic entrepreneurship in the UK: Widening the focus on entrepreneurial activities. Research Policy, 42(2), 408–422.

    Article  Google Scholar 

  • Agrawal, A., & Henderson, R. (2002). Putting patents in context: Exploring knowledge transfer from MIT. Management Science, 48(1), 44–60.

    Article  Google Scholar 

  • Alavi, M., & Leidner, D. E. (2001). Review: Knowledge management and knowledge management systems: Conceptual foundations and research issues. MIS Quarterly, 25(1), 107–136.

    Article  Google Scholar 

  • Aldridge, T., & Audretsch, D. B. (2010). Does policy influence the commercialization route? Evidence from national institutes of health funded scientists. Research Policy, 39(5), 583–588.

    Article  Google Scholar 

  • Arundel, A., Es-Sadki, N., Barjak, F., Perrett, P., Samuel, O., & Lilischkis, S. (2013). Knowledge transfer study 2010–2012—Final Report. European Commission: Brussels.

    Google Scholar 

  • Aschhoff, B., & Grimpe, C. (2014). Contemporaneous peer effects, career age and the industry involvement of academics in biotechnology. Research Policy, 43(2), 367–381.

    Article  Google Scholar 

  • Astebro, T., Bazzazian, N., & Braguinsky, S. (2012). Startups by recent university graduates and their faculty: Implications for university entrepreneurship policy. Research Policy, 41(4), 663–677.

    Article  Google Scholar 

  • Audretsch, D., & Stephan, P. (1996). Company scientist locational links: The case of biotechnology. American Economic Review, 86(3), 641–652.

    Google Scholar 

  • Audretsch, D. B., & Stephan, P. E. (1999). Knowledge spillovers in biotechnology: Sources and incentives. Journal of Evolutionary Economics, 9(1), 97–107.

    Article  Google Scholar 

  • Azoulay, P., Ding, W., & Stuart, T. (2006). The Impact of academic patenting on the rate, quality and direction of (Public) research. Journal of Industrial Economics, 57(4), 637–676.

    Article  Google Scholar 

  • Azoulay, P., Ding, W., & Stuart, T. (2007). The determinants of faculty patenting behavior: demographics or opportunities. Journal of Economic Behavior and Organization, 63(4), 599–623.

    Article  Google Scholar 

  • Balconi, M., Breschi, S., & Lissoni, F. (2004). Networks of inventors and the role of academia: An exploration of Italian patent data. Research Policy, 33(1), 127–145.

    Article  Google Scholar 

  • Baldini, N. (2008). Negative effects of university patenting: Myths and grounded evidence. Scientometrics, 75(2), 289–311.

    Article  Google Scholar 

  • Baldini, N., Grimaldi, R., & Sobrero, M. (2007). To patent or not to patent? A survey of Italian inventors on motivations, incentives, and obstacles to university patenting. Scientometrics, 70(2), 333–354.

    Article  Google Scholar 

  • Bekelman, J. E., Li, Y., & Gross, C. P. (2003). Scope and impact of financial conflicts of interest in biomedical research—a systematic review. Jama-Journal of the American Medical Association, 289(4), 454–465.

    Article  Google Scholar 

  • Bercovitz, J., & Feldman, M. (2008). Academic entrepreneurs: Organizational change at the individual level. Organization Science, 19(1), 69–89.

    Article  Google Scholar 

  • Bercovitz, J., Feldman, M., Feller, I., & Burton, R. (2001). Organizational structure as a determinant of academic patent and licensing behavior: An exploratory study of Duke, Johns Hopkins, and Pennsylvania State Universities. Journal of Technology Transfer, 26(1–2), 21–35.

    Article  Google Scholar 

  • Blumenthal, D., Campbell, E. C., Anderson, M. S., Causino, N., & Louis, K. S. (1997). Withholding research results in academic life science. Evidence from a National Survey of Faculty. Journal of the American Medical Association, 277(15), 1224–1228.

    Article  Google Scholar 

  • Blumenthal, D., Campbell, E. G., Causino, N., & Louis, K. S. (1996). Participation of life-science faculty in research relationships with industry. New England Journal of Medicine, 335(23), 1734–1739.

    Article  Google Scholar 

  • Blumenthal, D., Campbell, E. G., Gokhale, M., Yucel, R., Clarridge, B., Hilgartner, S., et al. (2006). Data withholding in genetics and the other life sciences: Prevalences and predictors. Academic Medicine, 81(2), 137–145.

    Article  Google Scholar 

  • Boardman, P., & Ponomariov, B. L. (2009). University researchers working with private companies. Technovation, 29(8), 142–153.

    Article  Google Scholar 

  • Bozeman, B. (2000). Technology transfer and public policy: A review of research and theory. Research Policy, 29(4–5), 627–655.

    Article  Google Scholar 

  • Breschi, S., & Catalini, C. (2010). Tracing the links between science and technology: An exploratory analysis of scientists’ and inventors’ networks. Research Policy, 39(1), 14–26.

    Article  Google Scholar 

  • Breschi, S., Lissoni, F., & Montobbio, F. (2008). University patenting and scientific productivity: A quantitative study of Italian academic inventors. European Management Review, 5(2), 91–109.

    Article  Google Scholar 

  • Buenstorf, G. (2009). Is academic entrepreneurship good or bad for science? Individual-level evidence from the Max Planck society. Research Policy, 38(2), 281–292.

    Article  Google Scholar 

  • Calderini, M., Franzoni, C., & Vezzulli, A. (2007). If star scientists do not patent: The effect of productivity, basicness and impact on the decision to patent in the academic world. Research Policy, 36(3), 303–319.

    Article  Google Scholar 

  • Campbell, E. G., Clarridge, B. R., Gokhale, M., Birenbaum, L., Hilgartner, S., Holtzman, N. A., et al. (2002). Data withholding in academic genetics: Evidence from a national survey. Journal of the American Medical Association, 287(4), 473–480.

    Article  Google Scholar 

  • Campbell, E. G., Powers, J. B., Blumenthal, D., & Biles, B. (2004). Inside the Triple Helix: Technology transfer and commercialization in the life sciences. Health Affairs, 23(1), 64–76.

    Article  Google Scholar 

  • Campbell, E. C., Weissman, J. S., Causino, N., & Blumenthal, D. (2000). Data withholding in academic medicine: Characteristics of faculty denied access to research results and biomaterials. Research Policy, 29(2), 303–312.

    Article  Google Scholar 

  • Carayol, N., & Matt, M. (2004). Does research organization influence academic production? Laboratory level evidence from a large European University. Research Policy, 33(8), 1081–1102.

    Article  Google Scholar 

  • Carlsson, B., & Fridh, A.-C. (2002). Technology transfer in United States Universities—A survey and statistical analysis. Journal of Evolutionary Economics, 12(1/2), 199–232.

    Article  Google Scholar 

  • Caulfield, T., & Ogbogu, U. (2008). Biomedical research and commercialization Agenda: A review of main considerations for neuroscience. Accountability in Research, 15(4), 303–320.

    Article  Google Scholar 

  • Caulfield, T., Ogbogu, U., Murdoch, C., & Einsiedel, E. (2008). Patents, commercialization and the Canadian stem cell research community. Regenerative Medicine, 3(4), 483–496.

    Article  Google Scholar 

  • Chapple, W., Lockett, A., Siegel, D., & Wright, M. (2005). Assessing the relative performance of UK University Technology Transfer Offices: Parametric and non-parametric evidence. Research Policy, 34(3), 369–384.

    Article  Google Scholar 

  • Colyvas, J. A. (2007). from divergent meanings to common practices: the early institutionalization of technology transfer in the life sciences at Stanford University. Research Policy, 36(4), 456–476.

    Article  Google Scholar 

  • Colyvas, J., Crow, M., Gelijns, A., Mazzoleni, R., Nelson, R. R., Rosenberg, N., & Sampat, B. N. (2000). How Do University Inventions Get into Practice? Conference on University-Industry Linkages, Georgia Tech.

  • Colyvas, J., Crow, M., Gelijns, A., Mazzoleni, R., Nelson, R. R., Rosenberg, N., et al. (2002). How do university inventions get into practice? Management Science, 48(1), 61–72.

    Article  Google Scholar 

  • Crespi, G., D’este, P., Fontana, R., & Geuna, A. (2008). The impact of Academic Patenting on University research and its transfer. Research Policy, 40(1), 55–68.

    Article  Google Scholar 

  • Crespi, G. A., Geuna, A., Nomalere, Ö., & Verspagen, B. (2010). University IPRs and Knowledge transfer. Is University ownership more efficient? Economics of Innovation and New Technology, 19(7), 627–648.

    Article  Google Scholar 

  • Czarnitzki, D., Glänzel, W., & Hussinger, K. (2009). Heterogeneity of patenting activity and its implications for scientific research. Research Policy, 38(1), 26–34.

    Article  Google Scholar 

  • Dasgupta, P., & David, P. A. (1994). Toward a new economics of science. Research Policy, 23(5), 487–521.

    Article  Google Scholar 

  • Davis, L., Larsen, M. T., & Lotz, P. (2011). Scientists’ perspectives concerning the effects of University patenting on the conduct of Academic Research in the Life Sciences. The Journal of Technology Transfer, 36(1), 14–37.

    Article  Google Scholar 

  • Davis, L., & Lotz, P. (2006). Academic-Business Cooperations in Biotechnology. Who Cooperates with Firms, and Why? Biotech Business Working Paper No. 06-2006,

  • Del-Palacio, I., Sole, F., & Batista-Foguet, J. M. (2008). University entrepreneurship centres as service businesses. Service Industries Journal, 28(7), 939–951.

    Article  Google Scholar 

  • Di Gregorio, D., & Shane, S. (2003). Why do some universities generate more start-ups than others? Research Policy, 32(2), 209–227.

    Article  Google Scholar 

  • Ensley, M. D., & Hmieleski, K. A. (2005). A comparative study of new venture top management team composition, dynamics and performance between university-based and independent start-ups. Research Policy, 34(7), 1091–1105.

    Article  Google Scholar 

  • Etzkowitz, H. (2003). Research groups as ‘Quasi-Firms’: The invention of the Entrepreneurial University. Research Policy, 32(1), 109–121.

    Article  Google Scholar 

  • European Commission. (2007). Improving knowledge transfer between research institutions and industry across Europe. Luxembourg: European Commission.

  • European Commission. (2008). Commission recommendation on the management of intellectual property in knowledge transfer activities and code of practice for universities and other public research organizations. Brussels: European Commission.

  • Ewing Marion Kauffman Foundation. (2003). Accelerating technology transfer and commercialization in the life and health sciences. www.kauffman.org/uploadedFiles/TechTranPanel_Report.pdf. Accessed 03.07.2010.

  • Fabrizio, K. R., & Di Minin, A. (2008). Commercializing the laboratory: Faculty patenting and the open science environment. Research Policy, 37(5), 914–931.

    Article  Google Scholar 

  • Fini, R., Lacetera, N., & Shane, S. (2010). Inside or outside the IP System? Business Creation in Academia. Research Policy, 39(8), 1060–1069.

    Article  Google Scholar 

  • Forti, E., Franzoni, C., & Sobrero, M. (2013). Bridges or isolates? Investigating the social networks of academic inventors. Research Policy, 42(8), 1378–1388.

    Article  Google Scholar 

  • Franklin, S. J., Wright, M., & Lockett, A. (2001). Academic and surrogate entrepreneurs in University Spin-out Companies. Journal of Technology Transfer, 26(1–2), 127–141.

    Article  Google Scholar 

  • Gaughan, M., & Corley, E. A. (2010). Science faculty at US Research Universities: The impacts of University Research Center-Affiliation and Gender on Industrial Activities. Technovation, 30(3), 215–222.

    Article  Google Scholar 

  • Geuna, A., & Nesta, L. J. J. (2006). University patenting and its effects on Academic Research: The Emerging European Evidence. Research Policy, 35(6), 790–807.

    Article  Google Scholar 

  • Geuna, A., & Rossi, F. (2011). Changes to University IPR regulations in Europe and the Impact on Academic Patenting. Research Policy, 40(8), 1068–1076.

    Article  Google Scholar 

  • Giuliani, E., Morrison, A., Pietrobelli, C., & Rabellotti, R. (2010). Who are the researchers that are collaborating with industry? An analysis of the wine sectors in Chile, South Africa and Italy. Research Policy, 39(6), 748–761.

    Article  Google Scholar 

  • Gluck, M. E., Blumenthal, D., & Stoto, M. A. (1987). University industry relationships in the life sciences—Implications for Students and Post-Doctoral Fellows. Research Policy, 16(6), 327–336.

    Article  Google Scholar 

  • Godin, B., & Gingras, Y. (2000). Impact of collaborative research on academic science. Science and Public Policy, 27(1), 65–73.

    Article  Google Scholar 

  • Goldfarb, B., & Henrekson, M. (2003). Bottom-up versus top-down policies towards the commercialization of university intellectual property. Research Policy, 32(4), 640–658.

    Article  Google Scholar 

  • Gulbrandsen, M., & Smeby, J.-C. (2005). Industry funding and university professors’ research performance. Research Policy, 34(6), 932–950.

    Article  Google Scholar 

  • Haeussler, C., & Colyvas, J. A. (2011). Breaking the Ivory Tower: Academic entrepreneurship in the life sciences in UK and Germany. Research Policy, 40(1), 41–54.

    Article  Google Scholar 

  • Haeussler, C., Jiang, L., Thursby, J., & Thursby, M. (2014). Specific and general information sharing among competing academic researchers. Research Policy, 43(3), 465–475.

    Article  Google Scholar 

  • Harmon, B., Ardishvili, A., Cardozo, R., Elder, T., Leuthold, J., Parshall, J., et al. (1997). Mapping the university technology transfer process. Journal of Business Venturing, 12(6), 423–434.

    Article  Google Scholar 

  • Heller, M. A., & Eisenberg, R. S. (1998). Can patents deter innovation? The Anticommons in Biomedical Research. Science, 280(5364), 698–701.

    Article  Google Scholar 

  • Henderson, R., Jaffe, A. B., & Trajtenberg, M. (1998). Universities as a source of commercial technology: A detailed analysis of university patenting, 1965–1988. The Review of Economics and Statistics, 80(1), 119–127.

    Article  Google Scholar 

  • Heslop, L. A., Mcgregor, E., & Griffith, M. (2001). Development of a technology readiness assessment measure: The cloverleaf model of technology transfer. Journal of Technology Transfer, 26(4), 369–384.

    Article  Google Scholar 

  • Hicks, D., & Hamilton, K. (1999). Does University-industry collaboration adversely affect university research? Issues in Science and Technology, 15(4), 74–75.

    Google Scholar 

  • Hoedemaekers, R. (2001). Commercialization, patents and moral assessment of biotechnology products. Journal of Medicine and Philosophy, 26(3), 273–284.

    Article  Google Scholar 

  • Hong, W., & Walsh, J. P. (2009). For Money or Glory? Commercialization, competition, and secrecy in the entrepreneurial university. The Sociological Quarterly, 50(1), 145–171.

    Article  Google Scholar 

  • Hottenrott, H., & Thorwarth, S. (2011). Industry funding of university research and scientific productivity. Kyklos, 64(4), 534–555.

    Article  Google Scholar 

  • Jacobsson, S., Lindholm-Dahlstrand, A., & Elg, L. (2013). Is the commercialization of european academic R&D Weak?-A critical assessment of a dominant belief and associated policy responses. Research Policy, 42(4), 874–885.

    Article  Google Scholar 

  • Jain, S., George, G., & Maltarich, M. (2009). Academics or Entrepreneurs? Investigating role identity modification of university scientists involved in commercialization activity. Research Policy, 38(6), 922–935.

    Article  Google Scholar 

  • Jensen, R., & Thursby, M. C. (2001). Proofs and prototypes for sale: The licensing of university inventions. The American Economic Review, 91(1), 240–259.

    Article  Google Scholar 

  • Jensen, R. A., Thursby, J. G., & Thursby, M. C. (2003). The disclosure and licensing of university inventions: The best we can do with the S**T we get to work with. International Journal of Industrial Organization, 21(9), 1271–1300.

    Article  Google Scholar 

  • Jong, S. (2008). Academic organizations and new industrial fields: Berkeley and Stanford after the rise of biotechnology. Research Policy, 37(8), 1267–1282.

    Article  Google Scholar 

  • Jonjic, T. (2010). Juggling between open science and the market: Public science responses to the patentability of biomedical research tools. Periodicum Biologorum, 112(4), 381–390.

    Google Scholar 

  • Kenney, M., & Goe, W. R. (2004). The role of social embeddedness in professorial entrepreneurship: A comparison of electrical engineering and computer science at Uc Berkeley and Stanford. Research Policy, 33(5), 691–707.

    Article  Google Scholar 

  • Kenney, M., & Patton, D. (2009). Reconsidering the Bayh-Dole act and the current university invention ownership model. Research Policy, 38(9), 1407–1422.

    Article  Google Scholar 

  • Kneller, R. (2001). Technology transfer: A review for biomedical researchers. Clinical Cancer Research, 7(4), 761–774.

    Google Scholar 

  • Krabel, S., & Mueller, P. (2009). What drives scientists to start their own company? An empirical investigation of Max Planck society scientists. Research Policy, 38(6), 947–956.

    Article  Google Scholar 

  • Kruecken, G. (2003). Learning the ‘New, New Thing’: On the role of path dependency in university structures. Higher Education, 46(3), 315–339.

    Article  Google Scholar 

  • Lach, S., & Schankerman, M. (2004). Royalty sharing and technology licensing in universities. Journal of the European Economic Association, 2(2–3), 252–264.

    Article  Google Scholar 

  • Landry, R., Amara, N., & Saihi, M. (2007). Patenting and spin-off creation by Canadian researchers in engineering and life sciences. Journal of Technology Transfer, 32(3), 217–249.

    Article  Google Scholar 

  • Large, D., Belinko, K., & Kalligatsi, K. (2000). Building successful technology commercialization teams: Pilot empirical support for the theory of cascading commitment. Journal of Technology Transfer, 25(2), 169–180.

    Article  Google Scholar 

  • Lee, Y. S. (2000). The sustainability of university-industry research collaboration: An empirical assessment. Journal of Technology Transfer, 25(2), 111–133.

    Article  Google Scholar 

  • Lerner, P. (2004). The university and the start-up: Lessons from the past two decades. Journal of Technology Transfer, 30(1–2), 49–56.

    Article  Google Scholar 

  • Leydesdorff, L., & Meyer, M. (2010). The decline of university patenting and the end of the Bayh-Dole effect. Scientometrics, 83(2), 355–362.

    Article  Google Scholar 

  • Lin, M.-W., & Bozeman, B. (2006). Researchers’ industry experience and productivity in University-Industry Research Centres: A “Scientific and Technical Human Capital” explanation. Journal of Technology Transfer, 31(2), 269–290.

    Article  Google Scholar 

  • Link, A. N., & Siegel, D. S. (2005). Generating science-based growth: an econometric analysis of the impact of organizational incentives on university-industry technology transfer. The European Journal of Finance, 11(3), 169–181.

    Article  Google Scholar 

  • Lockett, A., Siegel, D., Wright, M., & Ensley, M. D. (2005). The creation of spin-off firms at public research institutions: Managerial and policy implications. Research Policy, 34(7), 981–993.

    Article  Google Scholar 

  • Lockett, A., & Wright, M. (2005). Resources, capabilities, risk capital and the creation of university spin-out companies. Research Policy, 34(7), 1043–1057.

    Article  Google Scholar 

  • Louis, K. S., Blumenthal, D., Gluck, M. E., & Stoto, M. A. (1989). Entrepreneurs in Academe: An exploration of behaviors among life scientists. Administrative Science Quarterly, 34(1), 110–131.

    Article  Google Scholar 

  • Louis, K. S., Jones, L. M., Anderson, M. S., Blumenthal, D., & Campbell, E. G. (2001). Entrepreneurship, secrecy, and productivity: A comparison of clinical and non-clinical life sciences faculty. Journal of Technology Transfer, 26(3), 233–245.

    Article  Google Scholar 

  • Louis, K. S., Jones, L. M., & Campbell, E. (2002). Sharing in Science. American Scientist, 90(4), 304.

    Article  Google Scholar 

  • Lowe, R. A., & Gonzalez-Brambila, C. (2007). Faculty entrepreneurs and research productivity: A first look. Journal of Technology Transfer, 32(3), 173–194.

    Article  Google Scholar 

  • Malik, T. H. (2013). National institutional differences and cross-border university—industry knowledge transfer. Research Policy, 42(3), 776–787.

    Article  Google Scholar 

  • Markman, G. D., Gianiodis, P. T., Phan, P. H., & Balkin, D. B. (2005). Innovation speed: Transferring university technology to market. Research Policy, 34(7), 1058–1075.

    Article  Google Scholar 

  • Markman, G. D., Gianodis, P. T., Phan, P. H., & Balkin, D. B. (2004). Entrepreneurship from the Ivory Tower: Do incentive systems matter? Journal of Technology Transfer, 29(3–4), 353–364.

    Article  Google Scholar 

  • Martinelli, A., Meyer, M., & Vontunzelmann, N. (2008). Becoming an entrepreneurial university? A case study of knowledge exchange relationships and faculty attitudes in a medium-sized, research-oriented university. Journal of Technology Transfer, 33(3), 259–283.

    Article  Google Scholar 

  • Mazzoleni, R., & Nelson, R. R. (1998). The benefits and costs of strong patent protection: A contribution to the current debate. Research Policy, 27(3), 273–284.

    Article  Google Scholar 

  • Mowery, D. C., Nelson, R. R., Sampat, B. N., & Ziedonis, A. A. (2001). The growth of patenting and licensing by US universities: An assessment of the effects of the Bayh-Dole Act of 1980. Research Policy, 30(1), 99–119.

    Article  Google Scholar 

  • Mowery, D. C., & Ziedonis, A. A. (2002). Academic patent quality and quantity before and after the Bayh-Dole Act in the United States. Research Policy, 31(3), 399–418.

    Article  Google Scholar 

  • Murray, F. (2002). Innovation as co-evolution of scientific and technological networks: Exploring tissue engineering. Research Policy, 31(8–9), 1389–1403.

    Article  Google Scholar 

  • Murray, F. (2004). The role of academic inventors in entrepreneurial firms: Sharing the laboratory life. Research Policy, 33, 643–659.

    Article  Google Scholar 

  • Murray, F., & Stern, S. (2007). Do formal intellectual property rights hinder the free flow of scientific knowledge? An empirical test of the anti-commons hypothesis. Journal of Economic Behavior & Organization, 63(4), 648–687.

    Article  Google Scholar 

  • Mustar, P., Wright, M., & Clarysse, B. (2008). University spin-off firms: Lessons from ten years of experience in Europe. Science and Public Policy, 35(2), 67–80.

    Article  Google Scholar 

  • Nelson, A. J. (2014). From the Ivory Tower to the startup garage: Organizational context and commercialization processes. Research Policy, 43(7), 1144–1156.

    Article  Google Scholar 

  • Nerkar, A., & Shane, S. (2003). When do start-ups that exploit patented academic knowledge survive? International Journal of Industrial Organization, 21(9), 1391–1410.

    Article  Google Scholar 

  • Nicolaou, N., & Birley, S. (2003). Academic networks in a trichotomous categorisation of university spinouts. Journal of Business Venturing, 18(3), 333–359.

    Article  Google Scholar 

  • Oliver, A. L. (2004). Biotechnology entrepreneurial scientists and their collaborations. Research Policy, 33(4), 583–597.

    Article  Google Scholar 

  • O’Shea, R. P., Allen, T. J., Chevalier, A., & Roche, F. (2005). Entrepreneurial orientation, technology transfer and spinoff performance of US Universities. Research Policy, 34(7), 994–1009.

    Article  Google Scholar 

  • Owen-Smith, J., & Powell, W. W. (2001a). Careers and contradictions: Faculty responses to the transformation of knowledge and its uses in the life sciences. Research in the Sociology of Work, 10, 109–140.

    Article  Google Scholar 

  • Owen-Smith, J., & Powell, W. W. (2001b). To patent or not: Faculty decisions and institutional success at technology transfer. Journal of Technology Transfer, 26(1), 99–114.

    Article  Google Scholar 

  • Owen-Smith, J., & Powell, W. W. (2003). The expanding role of university patenting in the life sciences: Assessing the importance of experience and connectivity. Research Policy, 32(9), 1695–1711.

    Article  Google Scholar 

  • Palmintera, D. (2005). Accelerating economic development through University Technology Transfer. www.innovationassoc.com/docs/CT_NatRpt.ExSumm.pdf. Accessed 19.08.2009.

  • Perkmann, M., Tartari, V., Mckelvey, M., Autio, E., Brostrom, A., D’este, P., et al. (2013). Academic engagement and commercialisation: A review of the literature on university-industry relations. Research Policy, 42(2), 423–442.

    Article  Google Scholar 

  • Petticrew, M., & Roberts, H. (2006). Systematic reviews in the social sciences: A practical guide. Oxford: Blackwell.

    Book  Google Scholar 

  • Powers, J. B. (2004). R&D funding sources and university technology transfer: What is stimulating universities to be more entrepreneurial? Research in Higher Education, 45(1), 1–23.

    Article  Google Scholar 

  • Powers, J. B., & Mcdougall, P. P. (2005). University start-up formation and technology licensing with firms that go public: A resource-based view of academic entrepreneurship. Journal of Business Venturing, 20(3), 291–311.

    Article  Google Scholar 

  • Prodan, I., & Drnovsek, M. (2010). Conceptualizing academic-entrepreneurial intentions: An empirical test. Technovation, 30(5–6), 332–347.

    Article  Google Scholar 

  • Rai, A. K., & Eisenberg, R. S. (2003). Bayh-Dole reform and the progress of biomedicine. American Scientist, 91(1), 52–59.

    Article  Google Scholar 

  • Ranga, L. M., Debackere, K., & Vontunzelmann, N. (2003). Entrepreneurial universities and the dynamics of academic knowledge production: A case study of basic vs applied research in Belgium. Scientometrics, 58(2), 301–320.

    Article  Google Scholar 

  • Rasmussen, E., Mosey, S., & Wright, M. (2014). The influence of University Departments on the Evolution of Entrepreneurial competencies in spin-off ventures. Research Policy, 43(1), 92–106.

    Article  Google Scholar 

  • Renault, C. S. (2006). Academic capitalism and university incentives for faculty entrepreneurship. Journal of Technology Transfer, 31(2), 227–239.

    Article  Google Scholar 

  • Rodriguez, V., Janssens, F., Debackere, K., & De Moor, B. (2007a). Do material transfer agreements affect the choice of research agendas? The case of biotechnology in Belgium. Scientometrics, 71(2), 239–269.

    Article  Google Scholar 

  • Rodriguez, V., Janssens, F., Debackere, K., & Demoor, B. (2007b). Material transfer agreements and collaborative publication activity: The case of a biotechnology network. Research Evaluation, 16(2), 123–136.

    Article  Google Scholar 

  • Rogers, E. M., Yin, Y., & Hoffmann, J. (2000). Assessing the effectiveness of technology transfer offices at US research universities. The Journal of the Association of University Technology Managers, 12(1), 47–80.

    Google Scholar 

  • Rosell, C., & Agrawal, A. (2009). Have university knowledge flows narrowed? Evidence from Patent Data. Research Policy, 38(1), 1–13.

    Article  Google Scholar 

  • Rosenberg, N. (1998). Chemical engineering as a general purpose technology. In: Helpman, E. (Ed.), General purpose technologies and economic growth. Cambridge: MIT Press, pp. 167–192. In Czarnitzki, D., Glänzela, W. & Hussingere, K. (2009). Heterogeneity of patenting activity and its implications for scientific research. Research Policy, 38(1), 26–34.

  • Sampat, B. N., Mowery, D. C., & Ziedonis, A. A. (2003). Changes in University Patent Quality after the Bayh-Dole Act: A Re-Examination. International Journal of Industrial Organization, 21(9), 1371–1390.

    Article  Google Scholar 

  • Schuelke-Leech, B. A. (2013). Resources and research: An empirical study of the influence of departmental research resources on individual stem researchers involvement with industry. Research Policy, 42(9), 1667–1678.

    Article  Google Scholar 

  • Shane, S. (2000). Prior knowledge and the discovery of entrepreneurial opportunities. Organization Science, 11(4), 448–469.

    Article  Google Scholar 

  • Shane, S. (2002). Selling university technology: Patterns from MIT. Management Science, 48(1), 122–137.

    Article  Google Scholar 

  • Shane, S., & Somaya, D. (2007). the effects of patent litigation on University licensing efforts. Journal of Economic Behavior and Organization, 63(4), 739–755.

    Article  Google Scholar 

  • Shane, S., & Stuart, T. (2002). Organizational endowments and the performance of University Start-Ups. Management Science, 48(1), 154–170.

    Article  Google Scholar 

  • Shibayama, S. (2012). Conflict between entrepreneurship and open science, and the transition of scientific norms. Journal of Technology Transfer, 37(4), 508–531.

    Article  Google Scholar 

  • Shibayama, S., Walsh, J. P., & Baba, Y. (2012). Academic entrepreneurship and exchange of scientific resources: Material transfer in life and materials sciences in Japanese Universities. American Sociological Review, 77(5), 804–830.

    Article  Google Scholar 

  • Siegel, D. S., Waldman, D. A., Atwater, L. E., & Link, A. N. (2004). Toward a model of the effective transfer of scientific knowledge from academicians to practitioners: Qualitative evidence from the commercialization of University Technologies. Journal of Engineering and Technology Management, 21(1–2), 115–142.

    Article  Google Scholar 

  • Siegel, D. S., Waldmann, D. A., & Link, A. N. (2003). Assessing the impact of organizational practices on the productivity of University Technology Transfer Offices: An exploratory study. Research Policy, 32(1), 27–48.

    Article  Google Scholar 

  • Stephan, P., Gurmu, S., Sumell, A., & Black, G. (2007). Who’s patenting in the University? Economics of Innovation and New Technology, 16(2), 71–99.

    Article  Google Scholar 

  • Stuart, T. E., & Ding, W. W. (2006). When do scientists become entrepreneurs? The social structural antecedents of commercial activity in the academic life sciences. American Journal of Sociology, 112(1), 97–114.

    Article  Google Scholar 

  • Tartari, V., Perkmann, M., & Salter, A. (2014). In good company: The influence of peers on industry engagement by academic scientists. Research Policy, 43(7), 1189–1203.

    Article  Google Scholar 

  • Thursby, J. G., Jensen, R., & Thursby, M. C. (2001). Objectives, characteristics and outcomes of University licensing: A survey of major U.S. universities. The Journal of Technology Transfer, 26(1–2), 59–72.

    Article  Google Scholar 

  • Thursby, J. G., & Kemp, S. (2002). Growth and productive efficiency of university intellectual property licensing. Research Policy, 31(1), 109–124.

    Article  Google Scholar 

  • Thursby, J. G., & Thursby, M. C. (2002). Who is selling the Ivory Tower? Sources of growth in University Licensing. Management Science, 48(1), 90–104.

    Article  Google Scholar 

  • Thursby, J. G., & Thursby, M. C. (2003). Industry/University Licensing: Characteristics, concerns and issues from the perspective of the buyer. Journal of Technology Transfer, 28(3–4), 207–213.

    Article  Google Scholar 

  • Toole, A. A., & Czarnitzki, D. (2010). Commercializing Science: Is there a university “Brain Drain” from academic entrepreneurship? Management Science, 56(9), 1599–1614.

    Article  Google Scholar 

  • Van Looy, B., Callaert, J., & Debackere, K. (2006). Publication and patent behavior of academic researchers: Conflicting, reinforcing or Merely Co-Existing? Research Policy, 35(4), 596–608.

    Article  Google Scholar 

  • Van Looy, B., Callaert, M., Debackere, K., & Verbeek, A. (2003). Patent related indicators for assessing knowledge-generating institutions: Towards a contextualized approach. Journal of Technology Transfer, 28(1), 53–61.

    Article  Google Scholar 

  • Van Looy, B., Landoni, P., Callaert, J., Van Pottelsberghe, B., Sapsalis, E., & Debackere, K. (2011). Entrepreneurial effectiveness of European Universities: An empirical assessment of antecedents and trade-offs. Research Policy, 40(4), 553–564.

    Article  Google Scholar 

  • Van Looy, B., Ranga, L. M., Callaert, J., Debackere, K., & Zimmermann, E. (2004). Combining entrepreneurial and scientific performance in Academia: Towards a compounded and reciprocal Matthew effect? Research Policy, 33(3), 425–441.

    Article  Google Scholar 

  • Vogeli, C., Yucel, R., Bendavid, E., Jones, L. M., Anderson, M. S., Louis, K. S., et al. (2006). Data withholding and the next generation of scientists: Results of a national survey. Academic Medicine, 81(2), 128–136.

    Article  Google Scholar 

  • Walsh, J. P., Arora, A., & Cohen, W. M. (2003). Research Tool Patenting and Licensing and Biomedical Innovation. In W. Cohen & S. Merrill (Eds.), Patents in the knowledge-based economy (pp. 285–340). Washington, DC: National Academies Press.

    Google Scholar 

  • Walsh, J. P., Cohen, W. M., & Cho, C. (2007). Where excludability matters: Material versus intellectual property in Academic biomedical research. Research Policy, 36(8), 1184–1203.

    Article  Google Scholar 

  • Walsh, J. P., & Huang, H. (2014). Local context, academic entrepreneurship and open science: Publication secrecy and commercial activity among Japanese and US scientists. Research Policy, 43(2), 245–260.

    Article  Google Scholar 

  • Warren, A., Hanke, R., & Trotzer, D. (2008). Models for University Technology Transfer: Resolving conflicts between mission and methods and the dependency on geographic location. Cambridge Journal of Regions Economy and Society, 1(2), 219–232.

    Article  Google Scholar 

  • Zucker, L. G., & Darby, M. R. (1996). Star scientists and institutional transformation: Patterns of invention and innovation in the formation of the biotechnology industry. Proceedings of the National Academy of Sciences of the United States of America, 93(23), 12709–12716.

    Article  Google Scholar 

Download references

Acknowledgments

The first author would like to acknowledge the support of the Ministry of Higher Education, Science and Technology of the Republic of Slovenia and the European Social Fund (Innovative Scheme 2010 of the University of Ljubljana—contract number: 395–353).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mateja Drnovsek.

Appendices

Appendix 1

See Table 5.

Table 5 Overview of key studies on academic-industry knowledge transfer motivations of academic researchers

Appendix 2

See Table 6.

Table 6 Internal and external knowledge transfer predictors and motivators

Appendix 3

See Table 7.

Table 7 Overview of key studies on faculty-awarding mechanisms and knowledge transfer (cluster 5)

Appendix 4

See Table 8.

Table 8 Overview of key studies on knowledge transfer success rates and success factors

Appendix 5

See Table 9.

Table 9 Knowledge transfer performance predictors

Appendix 6

See Table 10.

Table 10 Overview of key studies on knowledge transfer-scientific output relationship

Appendix 7

See Table 11.

Table 11 Overview of key studies on knowledge transfer-open science relationship

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerbin, A., Drnovsek, M. Determinants and public policy implications of academic-industry knowledge transfer in life sciences: a review and a conceptual framework. J Technol Transf 41, 979–1076 (2016). https://doi.org/10.1007/s10961-015-9457-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10961-015-9457-0

Keywords

JEL Classification

Navigation