Skip to main content
Log in

A note on Gröbner bases

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this paper we introduce the new notion of co-polynomials as polynomials arising from the Graßmann–Plücker polynomials. Pairs of co-polynomials are shown to be critical in the computation of a Gröbner basis for the chirotope ideal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Björner, M. Las Vergnas, B. Sturmfels, N.White, and G. Ziegler, “Oriented Matroids,” Encycl. Math. Appl., 46, Cambridge University Press, Cambridge (1993).

    MATH  Google Scholar 

  2. J. Bokowski and A. Guedes de Oliveira, “Invariant theory-like theorems for matroids and oriented matroids,” Adv. Math., 109, 34–44 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  3. J. Bokowski, Jürgen, A. Guedes de Oliveira, and J. Richter, “Algebraic varieties characterizing matroids and oriented matroids,” Adv. Math., 87, 160–185 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  4. B. Büchberger, An Algorithm for Finding the Basis Elements in the Residue Class Ring Modulo a Zero Dimensional Polynomial Ideal, Ph.D. Thesis, Mathematical Institute, University of Innsbruck, Austria (1965).

  5. B. Büchberger, “Gröbner-bases: An algorithmic method in polynomial ideal theory,” In: N. K. Bose (Ed.), Multidimensional Systems Theory – Progress, Directions and Open Problems, Reidel Publishing Company, Dodrecht–Boston–Lancaster (1985), pp. 184–232.

    Google Scholar 

  6. P. Carvalho and A. Guedes de Oliveira, “Intersection and linking numbers in oriented matroids,” Discr. Comput. Geom., 31, 305–321 (2004).

    MATH  MathSciNet  Google Scholar 

  7. D. Cox, J. Little, and D. O’Shea, Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, Springer-Verlag, New York (1992).

    MATH  Google Scholar 

  8. B. Grünbaum, Convex Polytopes, Pure and Applied Mathematics 16, Interscience Publishers John Wiley and Sons, Inc., New York (1967).

    MATH  Google Scholar 

  9. A. Guedes de Oliveira, Oriented Matroids and Projective Invariant Theory, TH Darmstadt (1989).

  10. J. Lawrence, “Oriented matroids and multiply ordered sets,” Linear Algebra Appl., 48, 1–12 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  11. H. Li and Y. Wu, “Automated theorem proving in incidence geometry – A bracket algebra based elimination method,” MM Research Preprint, 19, 55–83 (2000).

    Google Scholar 

  12. I. Novik, “A note on geometric embeddings of simplicial complexes in a Euclidean space,” Discr. Comput. Geom., 23, No. 2, 293–302 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  13. G. M. Ziegler, Lectures on Polytopes, Springer-Verlag, New York (1995).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Carvalho.

Additional information

Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applications), Vol. 63, Optimal Control, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carvalho, P. A note on Gröbner bases. J Math Sci 161, 832–838 (2009). https://doi.org/10.1007/s10958-009-9604-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-009-9604-y

Keywords

Navigation