Skip to main content
Log in

On the Optimality of Napoleon Triangles

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

An elementary geometric construction, known as Napoleon’s theorem, produces an equilateral triangle, obtained from equilateral triangles erected on the sides of any initial triangle: The centers of the three equilateral triangles erected on the sides of the arbitrarily given original triangle, all outward or all inward, are the vertices of the new equilateral triangle. In this note, we observe that two Napoleon iterations yield triangles with useful optimality properties. Two inner transformations result in a (degenerate) triangle, whose vertices coincide at the original centroid. Two outer transformations yield an equilateral triangle, whose vertices are closest to the original in the sense of minimizing the sum of the three squared distances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Coxeter, H.S.M., Greitzer, S.L.: Geometry Revisited, vol. 19. Mathematical Association of America, Washington (1996)

    MATH  Google Scholar 

  2. Martini, H.: On the theorem of Napoleon and related topics. Math. Semesterber. 43(1), 47–64 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Grünbaum, B.: Is Napoleon’s theorem really Napoleon’s theorem? Am. Math. Mon. 119(6), 495–501 (2012)

    Article  MATH  Google Scholar 

  4. Wetzel, J.E.: Converses of Napoleon’s theorem. Am. Math. Mon. 99(4), 339–351 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hajja, M., Martini, H., Spirova, M.: On converses of Napoleon’s theorem and a modified shape function. Beitr. Algebra Geom. 47(2), 363–383 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Rigby, J.: Napoleon, Escher, and tessellations. Math. Mag. 64(4), 242–246 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kupitz, Y.S., Martini, H., Spirova, M.: The Fermat–Torricelli problem, part I: a discrete gradient-method approach. J Optim. Theory Appl. 158(2), 305–327 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gueron, S., Tessler, R.: The Fermat–Steiner problem. Am. Math. Mon. 109(5), 443–451 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Martini, H., Weissbach, B.: Napoleon’s theorem with weights in n-space. Geom. Dedic. 74(2), 213–223 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hajja, M., Martini, H., Spirova, M.: New extensions of Napoleon’s theorem to higher dimensions. Beitr. Algebra Geom 49(1), 253–264 (2008)

    MathSciNet  MATH  Google Scholar 

  11. Graham, A.: Kronecker Products and Matrix Calculus: With Applications, vol. 108. Horwood, Chichester (1981)

    MATH  Google Scholar 

  12. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  13. Bertsekas, D.P.: Nonlinear Programming. Athena Scientific, Belmont (1999)

    MATH  Google Scholar 

  14. Boyd, S.P., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  15. Arslan, O., Guralnik, D., Koditschek, D.E.: Navigation of distinct Euclidean particles via hierarchical clustering. In: Akin, H.L., Amato, N.M., Isler, V., van der Stappen, A.F. (eds.) Algorithmic Foundations of Robotics XI, Springer Tracts in Advanced Robotics, vol. 107, pp. 19–36 (2015)

Download references

Acknowledgments

We would like to thank Dan P. Guralnik for the numerous discussions and kind feedback. We would also like to express our thanks to Horst Martini for clarifying the use of the term Torricelli configuration and helpful suggestions. This work was funded by the Air Force Office of Science Research under the MURI FA9550-10-1-0567.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omur Arslan.

Additional information

Communicated by Horst Martini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arslan, O., Koditschek, D.E. On the Optimality of Napoleon Triangles. J Optim Theory Appl 170, 97–106 (2016). https://doi.org/10.1007/s10957-016-0911-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-016-0911-4

Keywords

Mathematics Subject Classification

Navigation