Skip to main content

Advertisement

Log in

Optimal Controllers with Complex Order Derivatives

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This paper studies the optimization of complex-order algorithms for the discrete-time control of linear and nonlinear systems. The fundamentals of fractional systems and genetic algorithms are introduced. Based on these concepts, complex-order control schemes and their implementation are evaluated in the perspective of evolutionary optimization. The results demonstrate not only that complex-order derivatives constitute a valuable alternative for deriving control algorithms, but also the feasibility of the adopted optimization strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Oldham, K., Spanier, J.: The Fractional Calculus: Theory and Application of Differentiation and Integration to Arbitrary Order. Academic Press, New York (1974)

    Google Scholar 

  2. Miller, K., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  3. Samko, S., Kilbas, A., Marichev, O.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, London (1993)

    MATH  Google Scholar 

  4. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  5. Kilbas, A., Srivastava, H.M., Trujillo, J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  6. Machado, J.T., Kiryakova, V., Mainardi, F.: Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16(3), 1140–1153 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus Models and Numerical Methods. Series on Complexity, Nonlinearity and Chaos. World Scientific, Singapore (2012)

    MATH  Google Scholar 

  8. Oustaloup, A.: La Commande CRONE: Commande Robuste D’Ordre Non Entier. Hermès, Paris (1991)

    MATH  Google Scholar 

  9. Machado, J.T.: Analysis and design of fractional-order digital control systems. Syst. Anal. Model. Simul. 27(2–3), 107–122 (1997)

    MATH  Google Scholar 

  10. Podlubny, I.: Fractional-order systems and PIλ D μ -controllers. IEEE Trans. Autom. Control 44(1), 208–213 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zaslavsky, G.: Hamiltonian Chaos and Fractional Dynamics. Oxford University Press, New York (2005)

    MATH  Google Scholar 

  12. Magin, R.: Fractional Calculus in Bioengineering. Begell House, Redding (2006)

    Google Scholar 

  13. Baleanu, D., Ozlem, D., Agrawal, O.: A central difference numerical scheme for fractional optimal control problems. J. Vib. Control 15(4), 583–597 (2009)

    Article  MathSciNet  Google Scholar 

  14. Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  15. Agrawal, O., Ozlem, D., Baleanu, D.: Fractional optimal control problems with several state and control variables. J. Vib. Control 16(13), 1967–1976 (2010)

    Article  MathSciNet  Google Scholar 

  16. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity: an Introduction to Mathematical Models. Imperial College Press, London (2010)

    Book  MATH  Google Scholar 

  17. Monje, C.A., Chen, Y., Vinagre, B.M., Xue, D., Feliu, V.: Fractional-order Systems and Controls: Fundamentals and Applications. Advances in Industrial Control. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  18. Tarasov, V.E.: Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media. Nonlinear Physical Science. Springer, Berlin (2010)

    MATH  Google Scholar 

  19. Petráš, I.: Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation. Nonlinear Physical Science. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  20. Al-Alaoui, M.A.: Novel digital integrator and differentiator. Electron. Lett. 29(4), 376–378 (1993)

    Article  Google Scholar 

  21. Machado, J.T.: Discrete-time fractional-order controllers. Fract. Calc. Appl. Anal. 4(1), 47–66 (2001)

    MathSciNet  MATH  Google Scholar 

  22. Tseng, C.C.: Design of fractional order digital FIR differentiators. IEEE Signal Process. Lett. 8(3), 77–79 (2001)

    Article  Google Scholar 

  23. Chen, Y.Q., Moore, K.L.: Discretization schemes for fractional-order differentiators and integrators. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 49(3), 363–367 (2002)

    Article  MathSciNet  Google Scholar 

  24. Vinagre, B.M., Chen, Y.Q., Petras, I.: Two direct Tustin discretization methods for fractional-order differentiator/integrator. J. Franklin Inst. 340(5), 349–362 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Chen, Y.Q., Vinagre, B.M.: A new IIR-type digital fractional order differentiator. Signal Process. 83(11), 2359–2365 (2003)

    Article  MATH  Google Scholar 

  26. Barbosa, R.S., Machado, J.T., Silva, M.: Time domain design of fractional differintegrators using least squares approximations. Signal Process. 86(10), 2567–2581 (2006)

    Article  MATH  Google Scholar 

  27. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  28. Goldenberg, D.E.: Genetic Algorithms in Search Optimization, and Machine Learning. Addison-Wesley, Reading (1989)

    Google Scholar 

  29. Cao, J.-Y., Cao, B.-G.: Design of fractional order controller based on particle swarm optimization. Int. J. Control. Autom. Syst. 4(6), 775–781 (2006)

    Google Scholar 

  30. Valério, D., da Costa J, S.: Tuning of fractional controllers minimising H 2 and H norms. Acta Polytech. Hung. 3(4), 55–70 (2006)

    Google Scholar 

  31. Maiti, D., Acharya, A., Chakraborty, M., Konar, A., Janarthanan, R.: Tuning PID and PIλ D δ controllers using the integral time absolute error criterion. In: 2008 IEEE Forth International Conference on Information and Automation for Sustainability, Colombo, Sri Lanka (2008)

    Google Scholar 

  32. Biswas, A., Das, S., Abraham, A., Dasgupta, S.: Design of fractional-order PIλ D μ controllers with an improved differential evolution. Eng. Appl. Artif. Intell. 22, 343–350 (2009)

    Article  MathSciNet  Google Scholar 

  33. Machado, J.T., Galhano, A., Oliveira, A.M., Tar, J.K.: Optimal approximation of fractional derivatives through discrete-time fractions using genetic algorithms. Commun. Nonlinear Sci. Numer. Simul. 15(3), 482–490 (2010)

    Article  Google Scholar 

  34. Machado, J.T.: Optimal tuning of fractional controllers using genetic algorithms. Nonlinear Dyn. 62(1–2), 447–452 (2010)

    MathSciNet  MATH  Google Scholar 

  35. Padhee, S., Gautam, A., Singh, Y., Kaur, G.: A novel evolutionary tuning method for fractional order PID controller. Int. J. Soft Comput. Eng. 1(3), 1–9 (2011)

    Google Scholar 

  36. Gao, Z., Liao, X.: Rational approximation for fractional-order system by particle swarm optimization. Nonlinear Dyn. 67(2), 1387–1395 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Hartley, T.T., Adams, J.L., Lorenzo, C.F.: Complex-order distributions. In: ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Long Beach, CA, DETC2005-84952 (2005)

    Google Scholar 

  38. Hartley, T.T., Lorenzo, C.F., Adams, J.L.: Conjugated-order differintegrals. In: ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Long Beach, CA, DETC2005-84951 (2005)

    Google Scholar 

  39. Silva, M.F., Machado, J.T., Barbosa, R.S.: Complex-order dynamics in hexapod locomotion. Signal Process. 86(10), 2785–2793 (2006)

    Article  MATH  Google Scholar 

  40. Adams, J.L., Hartley, T.T., Lorenzo, C.F.: Complex-order distributions using conjugated-order differintegrals. In: Sabatier, J., Agrawal, O.P., Tenreiro Machado, J.A. (eds.) Theoretical Developments and Applications in Physics and Engineering, pp. 347–360. Springer, Berlin (2007)

    Google Scholar 

  41. Barbosa, R.S., Machado, J.T., Silva, M.F.: Discretization of complex-order algorithms for control applications. J. Vib. Control 14(9–10), 1349–1361 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  42. Adams, J.L., Hartley, T.T., Lorenzo, C.F.: Identification of complex order-distributions. J. Vib. Control 14(9–10), 1375–1388 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  43. Pinto, C.M., Machado, J.T.: Complex-order Van der Pol oscillator. Nonlinear Dyn. 65(3), 247–254 (2011)

    Article  Google Scholar 

  44. Pinto, C.M., Machado, J.T.: Complex order biped rhythms. Int. J. Bifurc. Chaos Appl. Sci. Eng. 21(10), 3053–3061 (2011)

    Article  Google Scholar 

  45. Machado, J.T., Galhano, A., Oliveira, A.M., Tar, J.K.: Approximating fractional derivatives through the generalized mean. Commun. Nonlinear Sci. Numer. Simul. 14(11), 3723–3730 (2009)

    Article  MATH  Google Scholar 

  46. Machado, J.T.: Multidimensional scaling analysis of fractional systems. Comput. Math. Appl. (2012). doi:10.1016/j.camwa.2012.02.069

    Google Scholar 

  47. Barbosa, R.S., Machado, J.T.: Describing function analysis of systems with impacts and backlash. Nonlinear Dyn. 29(1–4), 235–250 (2002)

    Article  MATH  Google Scholar 

  48. Duarte, F., Machado, J.T.: Describing function of two masses with backlash. Nonlinear Dyn. 56(4), 409–413 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Tenreiro Machado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Machado, J.A.T. Optimal Controllers with Complex Order Derivatives. J Optim Theory Appl 156, 2–12 (2013). https://doi.org/10.1007/s10957-012-0169-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-012-0169-4

Keywords

Navigation