Skip to main content
Log in

Statistical Thermodynamics of an “Open” Hard Sphere System on the Equilibrium Fluid Isotherm: Study of Properties of the Freezing Transition Without Direct Involvement of the Equilibrium Solid Phase

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Using several theoretical tools\(\ldots \) (i) the nucleation theorem, (ii) an equivalent cavity, (iii) the reversible work of adding a cavity to an open hard sphere system, and (iv) the theory of “stability”... the authors estimated the density at which the hard sphere freezing transition occurs. No direct involvement of the equilibrium solid phase is involved. The reduced density \(\uppi a^3\rho _f/6\) (where a is the hard sphere diameter and \(\rho _f \) is the actual density at which freezing occurs) is found to be 0.4937 while the value obtained by computer simulation is 0.494. The agreement is good, but the new method still contains some approximation. However, the approximation is based on the idea that at a density just below \(\rho _f \) the fluid adopts a distorted structure resembling the solid, but different enough so that long-range order vanishes. Initial loss of stability may not be involved in every fluid–solid transition, but it may be an early step in the hard sphere and related systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernal, J.D.: Geometry of the structure of monatomic liquids. Nature (London) 185, 68–70 (1960)

    Article  ADS  Google Scholar 

  2. Bernal, J.D., Mason, J.: Packing of spheres: co-ordination of randomly packed spheres. Nature (London) 188, 910–911 (1960)

    Article  ADS  Google Scholar 

  3. Scott, G.D.: Packing of spheres: packing of equal spheres. Nature (London) 188, 908–909 (1960)

    Article  ADS  MATH  Google Scholar 

  4. Berryman, J.G.: Random close packing of hard spheres and disks. Phys. Rev. A 27(2), 1053–1061 (1983)

    Article  ADS  Google Scholar 

  5. Speedy, R.J.: Accurate theory of the hard sphere fluid. J. Chem. Soc. Faraday Trans. 2(73), 714–721 (1977)

    Article  Google Scholar 

  6. Kamien, R.D., Liu, A.J.: Why is random close packing reproducible? Phys. Rev. Lett. 99(15), 155501 (2007)

    Article  ADS  Google Scholar 

  7. Rintoul, M.D., Torquato, S.: Metastability and crystallization in hard-sphere systems. Phys. Rev. Lett. 77(20), 4198–4201 (1998)

    Article  ADS  Google Scholar 

  8. Reiss, H., Frisch, H.L., Lebowitz, J.L.: Statistical mechanics of rigid spheres. J. Chem. Phys. 31(2), 369–380 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  9. Siderius, D.W., Corti, D.S.: On the use of multiple interpolation functions in scaled particle theory to improve the predictions of the properties of the hard-sphere fluid. J. Chem. Phys. 127(4), 144502 (2007)

    Article  ADS  Google Scholar 

  10. Speedy, R.J., Reiss, H.: Cavities in the hard sphere fluid and crystal and the equation of state. Mol. Phys. 72(5), 999–1014 (1991)

    Article  ADS  Google Scholar 

  11. Speedy, R.J., Reiss, H.: A computer simulation study of cavities in the hard disc fluid and crystal. Mol. Phys. 72(5), 1015–1033 (1991)

    Article  ADS  Google Scholar 

  12. Bagchie, B., Cerjan, C., Rice, S.A.: Theoretical analysis of the achievement of random close packing of hard spheres and a conjecture on spinodal decomposition. Phys. Rev. B 28(11), 6411–6415 (1983)

    Article  ADS  Google Scholar 

  13. Xu, X., Rice, S.A.: Maximally random jamming of one-component and binary hard-disk fluids in two dimensions. Phys. Rev. E 83(2), 021120 (2011)

    Article  ADS  Google Scholar 

  14. Torquato, S.: Random Heterogeneous Materials. Microstructure and Macroscopic Properties. Springer, New York (2002)

    Book  MATH  Google Scholar 

  15. Kashchiev, D.: Nucleation. Basic Theory with Applications. Butterworth-Heinemann, Oxford (2000)

    Google Scholar 

  16. Reiss, H.: Methods of Thermodynamics. Dover, New York (1997)

    Google Scholar 

  17. Hill, T.L.: Statistical Mechanics. Principles and Selected Applications. Dover, New York (1987)

    MATH  Google Scholar 

  18. Zandi, R., Reguera, D., Reiss, H.: Nucleation rates in a new phenomenological model. J. Phys. Chem. B 110(44), 22251–22260 (2006)

    Article  Google Scholar 

  19. Debenedetti, P.G.: Metastable Liquids. Concepts and Principles. Princeton University Press, Princeton (1996)

    Google Scholar 

  20. Corti, D.S., Debenedetti, P.G.: Statistical mechanics of fluids under internal constraints: rigorous results for the one-dimensional hard rod fluid. Phys. Rev. E. 57(4), 4211–4226 (1998)

    Article  ADS  Google Scholar 

  21. Kivelson, D., Reiss, H.: Metastable systems in thermodynamics: consequences, role of constraints. J. Phys. Chem. B 103(39), 8337–8343 (1999)

    Article  Google Scholar 

  22. Bowles, R.K., Reguera, D., Djikaev, Y., Reiss, H.: A theorem for inhomogeneous systems: the generalization of the nucleation theorem. J. Chem. Phys. 115(4), 1853–1866 (2001); ibid 116(5), 2330–2330 (2002)

  23. Kegel, W.K., Reiss, H., Lekkerkerker, H.N.W.: Freezing transition in very small systems of hard spheres. Phys. Rev. Lett. 83(25), 5298–5301 (1999)

    Article  ADS  Google Scholar 

  24. Kegel, W.K.: Freezing of hard spheres in confinement. J. Chem. Phys. 115(14), 6538–6549 (2001)

    Article  ADS  Google Scholar 

  25. Reiss, H., Ellerby, H.M., Manzanares, J.A.: Ornstein–Zernike-like equations in statistical geometry: stable and metastable systems. J. Phys. Chem. 100(14), 5970–5981 (1996)

    Article  Google Scholar 

Download references

Acknowledgments

Foremost, I (J.A.M.) wish to express my deepest gratitude and respect to the late Professor Howard Reiss, an extremely stimulating scientist and best friend who has been a preeminent reference all along my academic career. This paper is dedicated to Dr. R.J. Speedy who almost single handedly invented the elegant discipline of statistical geometry. Also, the authors are indebted to many colleagues for valuable discussions concerning the paper. These include Professors Jianzhong Wu of the University of California, Riverside; Raphael Levine of the Hebrew University of Jerusalem; Robert Scott, Thomas Mason, Charles Knobler, and William Gelbart of the University of California, Los Angeles; Richard Bowles of the University of Saskatchewan; and Salvatore Torquato of Princeton University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. Manzanares.

Additional information

Howard Reiss—Deceased.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reiss, H., Manzanares, J.A. Statistical Thermodynamics of an “Open” Hard Sphere System on the Equilibrium Fluid Isotherm: Study of Properties of the Freezing Transition Without Direct Involvement of the Equilibrium Solid Phase. J Stat Phys 164, 1029–1042 (2016). https://doi.org/10.1007/s10955-016-1585-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-016-1585-x

Keywords

Navigation