Skip to main content
Log in

Renormalization of Competing Interactions and Superconductivity on Small Scales

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The interaction-induced orbital magnetic response of a nanoscale ring is evaluated for a diffusive system which is a superconductor in the bulk. The interplay of the renormalized Coulomb and Fröhlich interactions is crucial. The magnetic susceptibility which results from the fluctuations of the uniform superconducting order parameter is diamagnetic (paramagnetic) when the renormalized combined interaction is attractive (repulsive). Above the transition temperature of the bulk the total magnetic susceptibility has contributions from many wave-vector- and (Matsubara) frequency-dependent order parameter fluctuations. Each of these contributions results from a different renormalization of the relevant coupling energy, when one integrates out the fermionic degrees of freedom. The total diamagnetic response of the large superconductor may become paramagnetic when the system’s size decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Here, high temperatures are above the Ginzburg region, in which one must include higher order terms. The Ginzburg criterion was discussed by Aharony et al. [21].

References

  1. Wilson, K.G., Kogut, J.: The renormalization group and the \(\epsilon \) expansion. Phys. Rep. 12, 75 (1974)

    Article  ADS  Google Scholar 

  2. Wilson, K.G.: The renormalization group: critical phenomena and the Kondo problem. Rev. Mod. Phys. 47, 773 (1975)

    Article  ADS  Google Scholar 

  3. Anderson, P.W.: A poor man’s derivation of scaling laws for the Kondo problem. J. Phys. C 3, 2436 (1970)

    Article  ADS  Google Scholar 

  4. Froehlich, J.: Scaling and Self-Similarity in Physics (Renormalization in Statistical Mechanics and Dynamics), Progress in Physics 7. Birkhaeuser, Basel (1983)

    Book  Google Scholar 

  5. Benfatto, G., Gallavotti, G.: Renormalization Group. Princeton University Press, Princeton, NJ (1995)

    MATH  Google Scholar 

  6. Gunther, L., Imry, Y.: Flux quantization without off-diagonal-long-range-order in a thin hollow cylinder. Solid State Commun. 7, 1391 (1969)

    Article  ADS  Google Scholar 

  7. I. O. Kulik, Magnetic flux quantization in the normal State, Zh. Exsp. Teor. Fiz. 58, 2171 (1970) [Sov. Phys. JETP 31, 1172 (1970)] and references therein

  8. Aslamazov, L.G., Larkin, A.I.: Fluctuation-induced magnetic susceptibility of superconductors and normal metals. Zh. Eksp. Teor. Fiz. 67, 647 (1974)

    Google Scholar 

  9. Büttiker, M., Imry, Y., Landauer, R.: Josephson behavior in small normal-metal rings. Phys. Lett. 96A, 365 (1983)

    Article  ADS  Google Scholar 

  10. Bary-Soroker, H., Entin-Wohlman, O., Imry, Y., Aharony, A.: Scale-dependent competing interactions: sign reversal of the average persistent current. Phys. Rev. Lett. 110, 056801 (2013)

    Article  ADS  Google Scholar 

  11. Ambegaokar, V., Eckern, U.: Coherence and persistent current in mesoscopic rings. Phys. Rev. Lett. 65, 381 (1990)

    Article  ADS  Google Scholar 

  12. Ambegaokar, V., Eckern, U.: Nonlinear diamagnetic response in mesoscopic rings of superconductors above \(T_c\). Europhys. Lett. 13, 733 (1990)

    Article  ADS  Google Scholar 

  13. Morel, P., Anderson, P.W.: Calculation of the superconducting state parameters with retarded electron-phonon interaction. Phys. Rev. 125, 1263 (1962)

    Article  ADS  Google Scholar 

  14. Bogoliubov, N.N., Tolmachev, V.V., Shirkov, D.V.: A New Method in the Theory of Superconductivity. Consultants Bureau Inc, New York (1959)

    Google Scholar 

  15. de Gennes, P.G.: Superconductivity of Metals and Alloys. Addison-Wesley Publishing Co., Reading, MA (1989)

    Google Scholar 

  16. Larkin, A.I., Varlamov, A.: Theory of Fluctuations in Superconductors. Oxford University Press, New York (2009)

    Google Scholar 

  17. Imry, Y.: Introduction to Mesoscopic Physics, 2nd edn. Oxford University Press, Oxford (2002)

    Google Scholar 

  18. Bary-Soroker, H., Entin-Wohlman, O., Imry, Y.: Effect of pair-breaking on mesoscopic persistent currents well above the superconducting transition temperature. Phys. Rev. Lett. 101, 057001 (2008)

    Article  ADS  Google Scholar 

  19. Bary-Soroker, H., Entin-Wohlman, O., Imry, Y.: Pair-breaking effect on meso-scopic persistent currents. Phys. Rev. B 80, 024509 (2009). references therein

    Article  ADS  Google Scholar 

  20. Altland, A., Simons, B.: Condensed Matter Field Theory. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  21. Aharony, A., Entin-Wohlman, O., Bary-Soroker, H., Imry, Y.: Limitations on the Ginzburg criterion for dirty superconductors. Lith. J. Phys. 52, 81 (2012)

    Article  Google Scholar 

  22. Abrikosov, A.A., Gorkov, L.P., Dzyaloshinski, I.E.: Methods of Quantum Field Theory in Statistical Physics. Prentice-Hall, Englewood Cliffs, NJ (1963)

    MATH  Google Scholar 

  23. Reich, S., Leitus, G., Feldman, Y.: Observation of magnetism in Au thin films. Appl. Phys. Lett. 88, 222502 (2006). and references therein

    Article  ADS  Google Scholar 

  24. Yamamoto, Y., Miura, T., Suzuki, M., Kawamura, N., Miyagawa, H., Nakamura, T., Kobayashi, K., Teranishi, T., Hori, H.: Direct observation of ferromagnetic spin polarization in gold nanoparticles. Phys. Rev. Lett. 93, 116801 (2004)

    Article  ADS  Google Scholar 

  25. Negishi, Y., Tsunoyama, H., Suzuki, M., Kawamura, N., Matsushita, M.M., Maruyama, K., Sugawara, T., Yokoyama, T., Tsukuda, T.: X-ray magnetic circular dichroism of size-selected, thiolated gold clusters. J. Am. Chem. Soc. 128, 12034 (2006)

    Article  Google Scholar 

  26. Bartolome, J., Bartolome, F., Garcia, L.M., Figueroa, A.I., Repolle, A., Martinez, M.J., Luis, F., Magen, C., Selenska-Pobell, S., Pobell, F., et al.: Strong paramagnetism of gold nanoparticles deposited on a Sulfolobus acidocaldarius S layer. Phys. Rev. Lett. 109, 247203 (2012)

    Article  ADS  Google Scholar 

  27. Crespo, P., Litran, R., Rojas, T.C., Multigner, M., de la Fuente, J.M., Sanchez-Lopez, J.C., Garcia, M.A., Hernando, A., Penades, S., Fernandez, A.: Permanent magnetism, magnetic anisotropy, and hysteresis of thiol-capped gold nanoparticles. Phys. Rev. Lett. 93, 087204 (2004)

    Article  ADS  Google Scholar 

  28. Garitaonandia, J.S., Insausti, M., Goikolea, E., Suzuki, M., Cashion, J.D., Kawamura, N., Ohsawa, H., Gil de Muro, I., Suzuki, K., Plazaola, F., et al.: Chemically induced permanent magnetism in Au, Ag, and Cu nanoparticles: localization of the magnetism by element selective techniques. Nano Lett. 8, 661 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank Yuval Oreg and Alexander Finkelstein for important discussions, and Hamutal Bary-Soroker for participation in Ref. [10], which led to the present work. This work was supported by the Israeli Science Foundation (ISF) and the US-Israel Binational Science Foundation (BSF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Aharony.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aharony, A., Entin-Wohlman, O. & Imry, Y. Renormalization of Competing Interactions and Superconductivity on Small Scales. J Stat Phys 157, 979–989 (2014). https://doi.org/10.1007/s10955-014-1100-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-014-1100-1

Keywords

Navigation