Skip to main content
Log in

Combination Laws for Scaling Exponents and Relation to the Geometry of Renormalization Operators

The Principle of Approximate Combination of Scaling Exponents

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Renormalization group has become a standard tool for describing universal properties of different routes to chaos—period-doubling in unimodal maps, quasiperiodic transitions in circle maps, dynamics on the boundaries of Siegel disks, destruction of invariant circles of area-preserving twist maps, and others. The universal scaling exponents for each route are related to the properties of the corresponding renormalization operators.

We propose a Principle of Approximate Combination of Scaling Exponents (PACSE) that organizes the scaling exponents for different transitions to chaos. Roughly speaking, if the combinatorics of a transition is a composition of two simpler combinatorics, then the scaling exponents of the combined combinatorics is approximately equal to the product of the scaling exponents, both in the parameter space and in the configuration space, corresponding to each of these two combinatorics. We state PACSE quantitatively as precise asymptotics of the scaling exponents for combined combinatorics, and give convincing numerical evidence for it for each of the four dynamical systems mentioned above.

We propose an explanation of PACSE in terms of the dynamical properties of the renormalization operators—in particular, as a consequence of certain transversal intersections of the stable and unstable manifolds of the operators corresponding to different transition to chaos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Apte, A., Wurm, A., Morrison, P.J.: Renormalization and destruction of 1/γ 2 tori in the standard nontwist map. Chaos 13(2), 421–433 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Arioli, G., Koch, H.: The critical renormalization fixed point for commuting pairs of area-preserving maps. Commun. Math. Phys. 295(2), 415–429 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Arnol’d, V.I.: Small denominators. I. Mapping the circle onto itself. Izv. Akad. Nauk SSSR, Ser. Mat. 25, 21–86 (1961). Correction: 28, 479–480 (1964). English translation: Amer. Math. Soc. Transl. (2) 46, 213–284 (1965)

    MathSciNet  Google Scholar 

  4. Brent, R.P.: Algorithms for Minimization Without Derivatives. Prentice-Hall, Englewood Cliffs (1973)

    MATH  Google Scholar 

  5. Briggs, K.M.: The doubledouble homepage. URL www.labs.bt.com/people/briggsk2/doubledouble.html

  6. Chang, S.J., McCown, J.: Universal exponents and fractal dimensions of Feigenbaum attractors. Phys. Rev. A 30(2), 1149–1151 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  7. Christiansen, F., Cvitanović, P., Rugh, H.H.: The spectrum of the period-doubling operator in terms of cycles. J. Phys. A 23(14), L713–L717 (1990). This article also appears in J. Phys. A 23(22), L7135–L7175 (1990)

    Article  ADS  Google Scholar 

  8. Collet, P., Eckmann, J.P.: Iterated Maps on the Interval as Dynamical Systems. Birkhäuser, Boston (1980)

    MATH  Google Scholar 

  9. Collet, P., Eckmann, J.P., Koch, H.: On universality for area-preserving maps of the plane. Physica D 3(3), 457–467 (1981)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Collet, P., Eckmann, J.P., Koch, H.: Period doubling bifurcations for families of maps on R n. J. Stat. Phys. 25(1), 1–14 (1981)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. de Faria, E., de Melo, W.: Rigidity of critical circle mappings. I. J. Eur. Math. Soc. 1(4), 339–392 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. de Faria, E., de Melo, W., Pinto, A.: Global hyperbolicity of renormalization for C r unimodal mappings. Ann. of Math. (2) 164(3), 731–824 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cvitanović, P., Gunaratne, G.H., Vinson, M.J.: On the mode-locking universality for critical circle maps. Nonlinearity 3(3), 873–885 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. De Carvalho, A., Lyubich, M., Martens, M.: Renormalization in the Hénon family. I. Universality but non-rigidity. J. Stat. Phys. 121(5–6), 611–669 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. de la Llave, R., Olvera, A.: The obstruction criterion for non-existence of invariant circles and renormalization. Nonlinearity 19(8), 1907–1937 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. de la Llave, R., Petrov, N.P.: Regularity of conjugacies between critical circle maps: an experimental study. Exp. Math. 11(2), 59–81 (2002)

    Google Scholar 

  17. de la Llave, R., Petrov, N.P.: Boundaries of Siegel disks—numerical studies of their dynamics and regularity. Chaos 18(3), 962–987 (2008)

    Google Scholar 

  18. de la Llave, R., Olvera, A., Petrov, N.P.: Universal scalings of universal scaling exponents. J. Phys. A 40(22), F427–F434 (2007)

    Article  ADS  MATH  Google Scholar 

  19. de la Llave, R., Olvera, A., Petrov, N.P.: A shadowing theorem for heteroclinic cycles with applications to properties of scaling exponents. Preprint (2010)

  20. de Melo, W., van Strien, S.: One-Dimensional Dynamics. Springer, Berlin (1993)

    MATH  Google Scholar 

  21. de Sousa Vieira, M.C.: Scaling factors associated with M-furcations of the 1−μ|x|z map. J. Stat. Phys. 53(5–6), 1315–1325 (1988)

    Article  ADS  MATH  Google Scholar 

  22. del Castillo-Negrete, D., Greene, J.M., Morrison, P.J.: Renormalization and transition to chaos in area preserving nontwist maps. Physica D 100(3–4), 311–329 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Derrida, B., Gervois, A., Pomeau, Y.: Iteration of endomorphisms on the real axis and representation of numbers. Ann. Inst. H. Poincaré Sect. A (N.S.) 29(3), 305–356 (1978)

    MathSciNet  MATH  Google Scholar 

  24. Derrida, B., Gervois, A., Pomeau, Y.: Universal metric properties of bifurcations of endomorphisms. J. Phys. A 12(3), 269–296 (1979)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Eckmann, J.P., Wittwer, P.: A complete proof of the Feigenbaum conjectures. J. Stat. Phys. 46(3–4), 455–475 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Eckmann, J.P., Koch, H., Wittwer, P.: A computer-assisted proof of universality for area-preserving maps. Mem. Am. Math. Soc. 47(289), vi+122 (1984)

  27. Feigenbaum, M.J.: Quantitative universality for a class of nonlinear transformations. J. Stat. Phys. 19(1), 25–52 (1978)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Feigenbaum, M.J.: The universal metric properties of nonlinear transformations. J. Stat. Phys. 21(6), 669–706 (1979)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Feigenbaum, M.J., Kadanoff, L.P., Shenker, S.J.: Quasiperiodicity in dissipative systems: a renormalization group analysis. Physica D 5(2–3), 370–386 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  30. Finch, S.R.: Mathematical Constants. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  31. Forsythe, G.E., Malcolm, M.A., Moler, C.B.: Computer Methods for Mathematical Computations. Prentice-Hall, Englewood Cliffs (1977)

    MATH  Google Scholar 

  32. Gaidashev, D.G.: Cylinder renormalization for Siegel discs and a constructive measurable Riemann mapping theorem. Nonlinearity 20(3), 713–741 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Gaidashev, D., Koch, H.: Renormalization and shearless invariant tori: numerical results. Nonlinearity 17(5), 1713–1722 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Gaidashev, D., Yampolsky, M.: Cylinder renormalization of Siegel disks. Exp. Math. 16(2), 215–226 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ge, Y., Rusjan, E., Zweifel, P.: Renormalization of binary trees derived from one-dimensional unimodal maps. J. Stat. Phys. 59(5–6), 1265–1295 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Graczyk, J., Świątek, G.: Siegel disks with critical points in their boundaries. Duke Math. J. 119(1), 189–196 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  37. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers. Oxford University Press, Oxford (1990)

    Google Scholar 

  38. Herman, M.R.: Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations. Publ. Math. Inst. Hautes Études Sci. 49, 5–233 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  39. Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  40. Katznelson, Y., Ornstein, D.: The differentiability of the conjugation of certain diffeomorphisms of the circle. Ergod. Theory Dyn. Syst. 9(4), 643–680 (1989)

    MathSciNet  MATH  Google Scholar 

  41. Ketoja, J.A., Kurkijärvi, J.: Binary tree approach to scaling in unimodal maps. J. Stat. Phys. 75(3–4), 643–668 (1994)

    Article  ADS  MATH  Google Scholar 

  42. Khanin, K., Teplinsky, A.: Herman’s theory revisited. Invent. Math. 178(2), 333–344 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. Koch, H.: Renormalization group fixed point associated with the breakup of golden invariant tori. Discrete Contin. Dyn. Syst. 11(4), 881–909 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  44. Luque, A., Villanueva, J.: Computation of derivatives of the rotation number for parametric families of circle diffeomorphisms. Physica D 237(20), 2599–2615 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. MacKay, R.S.: A renormalisation approach to invariant circles in area-preserving maps. Physica D 7(1–3), 283–300 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. MacKay, R.S.: Renormalisation in Area-Preserving Maps. World Scientific, River Edge (1993)

    Book  MATH  Google Scholar 

  47. Manton, N.S., Nauenberg, M.: Universal scaling behaviour for iterated maps in the complex plane. Commun. Math. Phys. 89(4), 555–570 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  48. Mather, J.N.: Nonexistence of invariant circles. Ergod. Theory Dyn. Syst. 4(2), 301–309 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  49. Moser, J.: A rapidly convergent iteration method and non-linear differential equations. II. Ann. Sc. Norm. Super. Pisa Cl. Sci. (3) 20, 499–535 (1966)

    Google Scholar 

  50. Olvera, A.: Contribucion al estudio de la aplicacion standard. Ph.D. thesis, UNAM (1988)

  51. Olvera, A., Petrov, N.P.: Regularity properties of critical invariant circles of twist maps and their universality. SIAM J. Appl. Dyn. Syst. 7(3), 962–987 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. Olvera, A., Simó, C.: The obstruction method and some numerical experiments related to the standard map. In: Periodic Solutions of Hamiltonian Systems and Related Topics, Il Ciocco, 1986, pp. 235–244. Reidel, Dordrecht (1987)

    Google Scholar 

  53. Olvera, A., Simó, C.: An obstruction method for the destruction of invariant curves. Physica D 26(1–3), 181–192 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  54. Ostlund, S., Rand, D., Sethna, J., Siggia, E.D.: Universal properties of the transition from quasiperiodicity to chaos in dissipative systems. Physica D 8(3), 303–342 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  55. Shenker, S.J.: Scaling behavior in a map of a circle onto itself: empirical results. Physica D 5(2–3), 405–411 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  56. Shenker, S.J., Kadanoff, L.P.: Critical behavior of a KAM surface. I. Empirical results. J. Stat. Phys. 27(4), 631–656 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  57. Siegel, C.L.: Iteration of analytic functions. Ann. of Math. (2) 43, 607–612 (1942)

    Article  MathSciNet  MATH  Google Scholar 

  58. Sinai, Y.G., Khanin, K.M.: Smoothness of conjugacies of diffeomorphisms of the circle with rotations. Usp. Mat. Nauk 44(1(265)), 57–82 (1989). English translation: Russ. Math. Surv. 44(1), 69–99 (1989)

    MathSciNet  Google Scholar 

  59. Singer, D.: Stable orbits and bifurcation of maps of the interval. SIAM J. Appl. Math. 35(2), 260–267 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  60. Stark, J.: Smooth conjugacy and renormalisation for diffeomorphisms of the circle. Nonlinearity 1(4), 541–575 (1988)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  61. Stirnemann, A.: Renormalization for golden circles. Commun. Math. Phys. 152(2), 369–431 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  62. Stirnemann, A.: Existence of the Siegel disc renormalization fixed point. Nonlinearity 7(3), 959–974 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  63. Stirnemann, A.: A renormalization proof of Siegel’s theorem. Nonlinearity 7(3), 943–958 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  64. Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis. Springer, Berlin (1993)

    MATH  Google Scholar 

  65. Stirnemann, A.: Towards an existence proof of MacKay’s fixed point. Commun. Math. Phys. 188(3), 723–735 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  66. The GMP home page. URL www.swox.com/gmp/

  67. Tresser, C., Coullet, P.: Itérations d’endomorphismes et groupe de renormalisation. C. R. Acad. Sci. Paris Sér. A–B 287(7), A577–A580 (1978)

    MathSciNet  Google Scholar 

  68. Vilela Mendes, R.: Critical point dependence of universality in maps of the interval. Phys. Lett. A 84(1), 1–3 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  69. Widom, M.: Renormalization group analysis of quasiperiodicity in analytic maps. Commun. Math. Phys. 92(1), 121–136 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  70. Wilson, K.G.: Renormalization group and critical phenomena. I. Renormalization group and the Kadanoff scaling picture. Phys. Rev. B 4(9), 3174–3183 (1971)

    Article  ADS  MATH  Google Scholar 

  71. Yampolsky, M.: Hyperbolicity of renormalization of critical circle maps. Publ. Math. Inst. Hautes Études Sci. 96 (2002), 1–41 (2003)

    Google Scholar 

  72. Yampolsky, M.: Renormalization horseshoe for critical circle maps. Commun. Math. Phys. 240(1–2), 75–96 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  73. Yoccoz, J.C.: Conjugaison différentiable des difféomorphismes du cercle dont le nombre de rotation vérifie une condition diophantienne. Ann. Sci. École Norm. Sup. (4) 17(3), 333–359 (1984)

    MathSciNet  MATH  Google Scholar 

  74. Yoccoz, J.C.: Il n’y a pas de contre-exemple de Denjoy analytique. C. R. Acad. Sci. Paris Sér. I Math. 298(7), 141–144 (1984)

    MathSciNet  MATH  Google Scholar 

  75. Yoccoz, J.C.: Analytic linearization of circle diffeomorphisms. In: Dynamical Systems and Small Divisors, Cetraro, 1998. Lecture Notes in Math., vol. 1784, pp. 125–173. Springer, Berlin (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikola P. Petrov.

Additional information

The research of RL has been partially supported by NSF grant DMS 0901389, and Texas Coordinating Board ARP 0223. The research of NPP has been partially supported by NSF grant DMS 0807658. RL and NPP were also supported by Big XII fellowships. The computations were carried out on the computers of the Department of Mathematics of the University of Texas and the computers of IIMAS-UNAM.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de la Llave, R., Olvera, A. & Petrov, N.P. Combination Laws for Scaling Exponents and Relation to the Geometry of Renormalization Operators. J Stat Phys 143, 889–920 (2011). https://doi.org/10.1007/s10955-011-0211-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-011-0211-1

Keywords

Navigation