Skip to main content
Log in

Mechanistic Investigations of Uncatalyzed and Ruthenium(III) Catalyzed Oxidation of Vanillin by Periodate in Aqueous Alkaline Medium

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The kinetics and mechanism of uncatalyzed and ruthenium(III) catalyzed oxidation of vanillin (Van) by periodate were studied in alkaline medium at 298 K, and at constant ionic strength of 0.3 mol·dm−3. The reaction exhibits 1:1 stoichiometry ([Van]:[periodate]). The reaction shows first-order kinetics in [periodate] and [Ru(III)] and less than unit order with respect to [Van] and [OH]. The ionic strength and dielectric constant of the medium did not affect the rate significantly. The main products were identified by spot tests, melting temperature and FT-IR. From the effect of temperature on the reaction rate, the Arrhenius and activation parameters have been calculated. The catalytic constant (K C) was also calculated for Ru(III) catalysis at different temperatures. Plausible mechanisms have been proposed and rate laws explaining the experimental results are derived. Kinetic studies suggest that the active species of periodate and Ru(III) were [H2IO6]3− and [Ru(H2O)5OH]2+, respectively. The reaction constants involved in the different steps of the mechanism were calculated. The activation parameters with respect to the slow step of the mechanism, along with the corresponding thermodynamic quantities, were determined and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Scheme 2
Fig. 4

Similar content being viewed by others

References

  1. Tiziani, S., Sussich, F., Cesaro, A.: The kinetic of periodate oxidation of carbohydrates. 2. Polymeric substrates. Carbohydr. Res. 338, 1083–1095 (2003)

    Article  CAS  Google Scholar 

  2. Bassil, D., Makris, D.P., Kefalas, P.: Oxidation of caffeic acid in the presence of l-cysteine: isolation of 2-S-cysteinylcaffeic acid and evaluation of its antioxidant properties. Food Res. Int. 38, 395–402 (2005)

    Article  CAS  Google Scholar 

  3. Balakrishnan, B., Lesieur, S., Labarre, D.: Jayakrishnan: periodate oxidation of sodium alginate in water and in ethanol–water mixture: A comparative study. Carbohydr. Res. 340, 1425–1429 (2005)

    Article  CAS  Google Scholar 

  4. Burton, C.A.: In: Wiberg, K.B. (ed.) Oxidation in Organic Chemistry, Part A, p. 368. Academic Press, New York (1965)

    Google Scholar 

  5. Cotton, F.A., Wilkinson, G.: Advanced Inorganic Chemistry a Comprehensive Text, 5th edn, p. 569. Wiley, New York (1988)

    Google Scholar 

  6. Imoto, M., Maeda, T., Ouchi, T.: Studies on vinyl polymerization. Part 372. Polymerization of methyl methacrylate initiated with vanillin. Chem. Lett. 2, 153–156 (1978)

    Article  Google Scholar 

  7. Das, A.K.: Kinetic and mechanistic aspects of metal ion catalysis in cerium(IV) oxidation. Coord. Chem. Rev. 213, 307–325 (2001)

    Article  CAS  Google Scholar 

  8. Shivananda, K.N., Lakshmi, B., Jagadeesh, R.V., Puttaswamy, Mahendra, K.N.: Ru(III)-catalyzed oxidation of acetanilide, o-chloroacetanilide, p-chloroacetanilide and p-methylacetanilide by sodium periodate at pH 4. Appl. Catal: Gen. 326, 202–212 (2007)

    Article  CAS  Google Scholar 

  9. Tandon, P.K., Mahrotra, A.M., Srivastava, M., Dhunsia, M., Singh, S.B.: Ruthenium(III) catalysis in the reaction of hexacynosferrate and iodide ions in perchloric acid medium. Transit. Metal Chem. 32, 991–999 (2007)

    Article  Google Scholar 

  10. Singh, A.K., Srivastava, S., Srivastava, J., Srivastava, R., Singh, P.: Studies in kinetics and mechanism of oxidation of d-glucose and d-fructose by alkaline solution of potassium iodate in the presence of Ru(III) as homogenious catalyst. J. Mol. Catal. A 278, 72–81 (2007)

    Article  CAS  Google Scholar 

  11. Sandu, S., Sethuram, B., Rao, T.N.: Ruthenium (III) catalysed oxidation of chalcones by Ce(IV) in H2SO4–HOAc mixtures: a kinetic study. J. Indian Chem. Soc. 60, 198–200 (1983)

    Google Scholar 

  12. Panda, H.P., Sahu, B.D.: Kinetics and mechanism of ruthenium(III) catalyzed oxidation of substituted cinnamic acids by cerium(IV). Indian J. Chem. 28A, 323–324 (1989)

    CAS  Google Scholar 

  13. Malode, S.J., Abbar, J.C., Nandibewoor, S.T.: Mechanistic aspects of uncatalysed and ruthenium(III) catalysed oxidation of dl-ornithine monohydrochloride by silver(III) periodate complex in aqueous alkaline medium. Inorg. Chim. Acta 363, 2430–2442 (2010)

    Article  CAS  Google Scholar 

  14. Timy, P.J., Nandibewoor, S.T., Tuwar, S.M.: Kinetics and mechanism of the oxidation of vanillin by hexacyanoferrate(III) in aqueous alkaline medium. J. Solution Chem. 35, 51–62 (2006)

    Article  Google Scholar 

  15. Deepak, S.M., Chimatadar, S.A., Nandibewoor, S.T.: Oxidation of vanillin by a new oxidant diperiodatoargentate(III) in aqueous alkaline medium. Ind. Eng. Chem. Res. 46, 1459–1464 (2007)

    Article  Google Scholar 

  16. Satapathy, P.K., Baral, D.K., Aswar, A.S., Mohanty, P.: Kinetics and mechanism of oxidation of vanillin by cerium(IV) in aqueous perchlorate medium. Indian J. Chem. Tech. 20, 271–275 (2013)

    CAS  Google Scholar 

  17. Mishra, P.: Kinetics and mechanisms of oxidation of 4-hydroxy-3-methoxy benzaldehyde (vanillin) by Bi(V) in aqueous alkaline medium. Int. J. Pharm. Tech. Res. 1, 1234–1240 (2009)

    CAS  Google Scholar 

  18. Kathari, C., Pol, P., Nandibewoor, S.T.: The kinetics and mechanism of oxidation of vanillin by diperiodatonickelate(IV) in aqueous alkaline medium. Turk. J. Chem. 26, 229–236 (2002)

    CAS  Google Scholar 

  19. Reddy, C.S., Vijay Kumar, T.: kinetic and mechanistic study of ruthenium(III) catalysed and uncatalysed oxidation of oxalic acid by acid bromate. Indian J. Chem. 34A, 615–620 (1995)

    CAS  Google Scholar 

  20. Kamble, D.L., Chougale, R.B., Nandibewoor, S.T.: Kinetic and mechanism of uncatalyzed and Ru(III) catalyzed oxidation of allyl alcohol by N-bromosuccinimide in aqueous alkaline medium. Indian J. Chem. 35A, 865–869 (1996)

    CAS  Google Scholar 

  21. Feigl, F.: Spot Tests in Organic Analysis, p. 332. Elsevier, New York (1975)

    Google Scholar 

  22. Lide, D.R. (ed.): CRC Hand Book of Chemistry and Physics, 73rd edn. CRC Press, London (1992)

    Google Scholar 

  23. Moelwyn-Hughes, E.A.: Kinetics of Reaction in Solutions, p. 297. Oxford University Press, London (1947)

    Google Scholar 

  24. Crouthamel, C.E., Hayes, A.M., Martin, D.S.: Ionisation and hydration equilibria of periodic acid. J. Am. Chem. Soc. 73, 82–87 (1951)

    Article  CAS  Google Scholar 

  25. Bailar Jr., J.C., Emeleus, H.J., Nyholm, S.R., Trotman-Dikenson, A.F.: Comprehensive Inorganic Chemistry, vol. 2. Pergamon Press, Oxford (1975)

    Google Scholar 

  26. Tuwar, S.M., Nandibewoor, S.T., Raju, J.R.: Oxidation of allyl alcohol by diperiodatonickelate(IV) in aqueous alkaline medium. J. Indian Chem. Soc. 69, 651–653 (1992)

    CAS  Google Scholar 

  27. Magdum, P.A., Nandibewoor, S.T.: Mechanistic investigations of uncatalysed and ruthenium(III) catalysed oxidation of pharmaceutically important d-sorbitol by periodate in aqueous alkaline medium. World J. Pharm. Res. 3, 910–931 (2014)

    Google Scholar 

  28. Lewis, E.S.: Investigation of rates and mechanism of reactions in techniques of chemistry. In: Weissberger, A. (ed.) Techniques of Chemistry, vol. 6, pp. 421–427. Wiley, New York (1974)

    Google Scholar 

  29. Rangappa, K.S., Raghavendra, M.P., Mahadevappa, D.S., Channegouda, D.: Sodium N-chloro-p-toluenesulfonamide as a selective oxidant for hexosamine in alkaline medium: a kinetic and mechanistic study. J. Org. Chem. 63, 531–536 (1998)

    Article  CAS  Google Scholar 

  30. Bilehal, D.C., Kulkarni, R.M., Nandibewoor, S.T.: Kinetics and mechanistic study of ruthenium(III) catalysed oxidative deamination and decarboxylation of l-valine by alkaline permanganate. Can. J. Chem. 79, 1926–1933 (2001)

    Article  CAS  Google Scholar 

  31. Jagadeesh, R.V., Puttaswamy, : Ru(III), Os(VIII), Pd(II), and Pt(IV) catalysed oxidation of glycyl À glycine by sodium N-chloro-p-toluenesulfonamide: Comparative mechanistic aspects and kinetic modeling. J. Phys. Org. Chem. 21, 844–858 (2008)

    Article  CAS  Google Scholar 

  32. Cotton, F.A., Wilkinson, G., Murrillo, C.A., Bochmann, M.: Advanced Inorganic Chemistry, 6th edn, p. 1012. Wiley, New York (1999)

    Google Scholar 

  33. Sataraddi, S.R., Nandibewoor, S.T.: Oxidation of D-glucose by Silver (III) periodate complex in the presence of Ru(III)/Os(VIII) as a homogeneous catalyst: a comparative mechanistic study (Stopped flow technique). J. Solution Chem. 42, 897–915 (2013)

    Article  Google Scholar 

  34. Martinez, M., Pitarque, M., Eldik, R.V.: Outer-sphere redox reactions of [CoIII(NH3)5(H x P y O z )](m−3)—complexes. A temperature and pressure-dependence kinetic study on the influence of the phosphorous oxo anions. J. Chem. Soc. Dalton Trans. 2665–2669 (1996)

  35. Farokhi, S.A., Nandibewoor, S.T.: Kinetic, mechanistic and spectral studies for the oxidation of sulfanilic acid by alkaline hexacyanoferrate(III). Tetrahedron 59, 7595–7602 (2003)

    Article  CAS  Google Scholar 

  36. Gunagi, S.D., Nandibewoor, S.T., Chimatadar, S.A.: Oxidation of acyclovir by a cuprate(III) periodate complex in aqueous alkaline media: a kinetic and mechanistic approach. J. Solution Chem. 41, 777–792 (2012)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharanappa T. Nandibewoor.

Appendix

Appendix

Derivation of rate law for the uncatalyzed reaction

According to Scheme 1:

$$ {\text{Rate}}\;{ = }\; - \frac{{{\text{d}}\left[ {{\text{H}}_{ 2} {\text{IO}}_{ 6}^{{ 3 { - }}} } \right]}}{\text{dt}}{ = }k_{ 1} [ {\text{c}}_{ 1} ] $$
(10)
$$ K_{ 2} \;{ = }\;\frac{{ [ {\text{C}}_{ 1} ]}}{{ [ {\text{Van]}}\left[ {{\text{H}}_{ 2} {\text{IO}}_{ 6}^{ 3- } } \right]}} $$
$$ [ {\text{C}}_{ 1} ]\;{ = }\;K_{ 2} [ {\text{Van]}}\left[ {{\text{H}}_{ 2} {\text{IO}}_{ 6}^{ 3- } } \right] $$
(11)
$$ K_{ 1} \;{ = }\;\frac{{\left[ {{\text{H}}_{ 2} {\text{IO}}_{ 6}^{ 3- } } \right]}}{{\left[ {{\text{H}}_{ 3} {\text{IO}}_{ 6}^{ 2- } } \right]\left[ {{\text{OH}}^{ - } } \right]}} $$
$$ \left[ {{\text{H}}_{ 2} {\text{IO}}_{ 6}^{{ 3 { - }}} } \right]\,{=}\,K_{ 1} \left[ {{\text{H}}_{ 3} {\text{IO}}_{ 6}^{ 2- } } \right]\left[ {{\text{OH}}^{ - } } \right] $$
$$ \left[ {{\text{C}}_{ 1} } \right]\,{=}\,K_{ 1} K_{ 2} \left[ {\text{Van}} \right]\left[ {{\text{H}}_{ 3} {\text{IO}}_{ 6}^{ 2- } } \right]\left[ {{\text{OH}}^{ - } } \right] $$
$$ {\text{Rate}}\;{ = }\;k_{ 1} K_{ 1} K_{ 2} \left[ {\text{Van}} \right]\left[ {{\text{H}}_{ 3} {\text{IO}}_{ 6}^{ 2- } } \right]\left[ {{\text{OH}}^{ - } } \right] $$
(12)

The total concentration of [Van]T is given by,

$$ [{\text{Van}}]_{\text{T}} = [{\text{Van}}]_{\text{f}} + {\text{C}}_{1} $$

where T and f refer to total and free concentrations.

$$ [{\text{Van}}]_{\text{T}} = [{\text{Van}}]_{\text{f}} + K_{1} K_{2} [{\text{Van}}]_{\text{T}} [{\text{H}}_{3} {\text{O}}_{6}^{2 - } ][{\text{OH}}^{ - } ] $$
$$ = [{\text{Van}}]_{\text{f}} (1 + K_{1} K_{2} [{\text{H}}_{3} {\text{IO}}_{6}^{2 - } ][{\text{OH}}^{ - } ]) $$
$$ [ {\text{Van]}}_{\text{f}} = \frac{{ [ {\text{Van]}}_{\text{T}} }}{{1 + K_{1} K_{2} [{\text{H}}_{3} {\text{IO}}_{6}^{2 - } ][{\text{OH}}^{ - } ]}} $$

In view of the low concentration of \( \left[ {{\text{H}}_{ 3} {\text{IO}}_{6}^{2 - } } \right] \) used, the second term in denominator is neglected.

$$ [{\text{Van}}]_{\text{f}} = [{\text{Van}}]_{\text{T}} $$
(13)

Similarly, the concentration of \( {\text{OH}}^{ - } \) is

$$ [{\text{OH}}^{ - } ]_{\text{f}} = [{\text{OH}}^{ - } ]_{\text{T}} $$
(14)

Similarly,

$$ [ {\text{H}}_{3} {\text{IO}}_{6}^{3 - } ]_{\text{T}} = [ {\text{H}}_{3} {\text{IO}}_{6}^{2 - } ]_{\text{f}} + [ {\text{H}}_{3} {\text{IO}}_{6}^{3 - } ]_{\text{f}} + {\text{C}}_{1} $$
$$ = [ {\text{H}}_{3} {\text{IO}}_{6}^{2 - } ]_{\text{f}} + K_{1} [ {\text{H}}_{3} {\text{IO}}_{6}^{2 - } ]_{\text{f}} [{\text{OH}}^{ - } ] + K_{ 1} K_{ 2} [ {\text{Van][H}}_{3} {\text{IO}}_{6}^{2 - } ]_{\text{f}} [{\text{OH}}^{ - } ] $$
$$ = [ {\text{H}}_{3} {\text{IO}}_{6}^{2 - } ]_{\text{f}} (1 + K_{1} [{\text{OH}}^{ - } ] + K_{ 1} K_{ 2} [ {\text{Van]}}[{\text{OH}}^{ - } ]) $$
$$ [ {\text{H}}_{3} {\text{IO}}_{6}^{2 - } ]_{\text{f}} = \frac{{ [ {\text{H}}_{3} {\text{IO}}_{6}^{2 - } ]_{\text{T}} }}{{(1 + K_{1} [{\text{OH}}^{ - } ] + K_{ 1} K_{ 2} [ {\text{Van]}}[{\text{OH}}^{ - } ])}} $$
(15)

Substituting Eqs. 13, 14, and 15 in Eq. 12 we get,

$$ {\text{Rate = }}\frac{{k_{1} K_{1} K_{2} [ {\text{Van]}}_{\text{T}} [ {\text{H}}_{3} {\text{IO}}_{6}^{2 - } ][{\text{OH}}^{ - } ]_{\text{T}} }}{{(1 + K_{1} [{\text{OH}}^{ - } ] + K_{ 1} K_{ 2} [ {\text{Van]}}[{\text{OH}}^{ - } ])}} $$
$$ k_{u} { = }\frac{\text{Rate}}{{ [ {\text{H}}_{3} {\text{IO}}_{6}^{2 - } ]}}{ = }\frac{{k_{1} K_{1} K_{2} [ {\text{Van]}}_{\text{T}} [{\text{OH}}^{ - } ]_{\text{T}} }}{{(1 + K_{1} [{\text{OH}}^{ - } ] + K_{ 1} K_{ 2} [ {\text{Van]}}[{\text{OH}}^{ - } ])}} $$
(16)

Similarly the rate law for catalysed reaction can be derived.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, D.G., Magdum, P.A. & Nandibewoor, S.T. Mechanistic Investigations of Uncatalyzed and Ruthenium(III) Catalyzed Oxidation of Vanillin by Periodate in Aqueous Alkaline Medium. J Solution Chem 44, 1205–1223 (2015). https://doi.org/10.1007/s10953-015-0341-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-015-0341-1

Keywords

Navigation