Skip to main content
Log in

Calibration of the local magnitude scale (M L ) for Peru

  • ORIGINAL ARTICLE
  • Published:
Journal of Seismology Aims and scope Submit manuscript

Abstract

We propose a local magnitude scale (M L ) for Peru, based on the original Richter definition, using 210 seismic events between 2011 and 2014, recorded by 35 broadband stations of the National Seismic Network operated by the Geophysical Institute of Peru. In the solution model, we considered 1057 traces of maximum amplitude records on the vertical channel from simulated Wood-Anderson seismograms of shallow events (depths between 0 and 60 km) and hypocentral distances less than 600 km. The attenuation factor has been evaluated in terms of geometrical spreading and anelastic attenuation coefficients. The magnitude M L was defined as M L = L o g 10 A W A +1.5855L o g 10(R/100)+0.0008(R−100)+3±S, where, A W A is the displacement amplitude in millimeters (Wood-Anderson), R is the hypocentral distance (km), and S is the station correction. The results obtained for M L have good correlation with the m b , M s and M w values reported the ISC and NEIC. The anelastic attenuation curve obtained has a similar behavior to that other highly seismic regions. Station corrections were determined for all stations during the regression analysis resulting in values ranging between −0.97 and +0.73, suggesting a strong influence of local site effects on amplitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alsaker A, Kvamm LB, Hansen RA, Dahle A, Bungum H (1991) The ML scale in Norway. Bull Seismol Soc Am 81:379–398

    Google Scholar 

  • Anderson JA, Wood HO (1925) Description and theory of the torsion seismometer. Bull Seismol Soc Am 15:1–75

    Google Scholar 

  • Bakun WH, Joyner WB (1984) The ML scale in central California. Bull Seismol Soc Am 74:1827–1843

    Google Scholar 

  • Bindi D, Spallarossa D, Eva C, Cattaneo M (2005) Local and duration magnitudes in northwestern Italy, and seismic moment versus magnitude relationships. Bull Seismol Soc Am 95:592–604

    Article  Google Scholar 

  • Bormann P, Baumbach M, Bock G, Grosser H, Choy G, Boatwright J (2002) Seismic sources and source parameters. In: IASPEI new manual of seismological observatory practice, vol 1. GeoForschungs Zentrum, Potsdam, pp 16–48

    Google Scholar 

  • Bormann P, Dewey JW (2014) The new IASPEI standards for determining magnitudes from digital data and their relation to classical magnitudes. Deutsches GeoForschungsZentrum GFZ, Potsdam, pp 1–44

    Google Scholar 

  • Braunmiller J, Deichmann N, Giardini D, Wiemer S, the SED Magnitude Working Group (2005) Homogeneous moment-magnitude calibration in Switzerland. Bull Seismol Soc Am 95(1):58–74

    Article  Google Scholar 

  • Brenguier F (2001) Calculo de la magnitud local ML para terremotos en perú (estación sísmica de NNA). Instituto Geofísico del Perú 2:79–82

    Google Scholar 

  • Cahuari A, Tavera H (2007) Calculo de la magnitud local (ML) a partir de registros de aceleración. Boletín de la Sociedad Geológica del Perú 102:117–126

    Google Scholar 

  • Ccallo F, Tavera H (2002) La magnitud de sismos locales y regionales ocurridos en Perú a partir de la onda Lg y duración de su registro. Boletín de la Sociedad Geológica del Perú 4:61–69

    Google Scholar 

  • DeMets C, Gordon RG, Argus DF, Stein S (1990) Current plate motions. Geophys J Int 101:425–478

    Article  Google Scholar 

  • Hafiez HEA, El-Hussain I, Khalil AE, Deif A (2015) Determination of a local earthquake magnitude scale for the Sultanate of Oman. Arab J Geosci 8(4):1921–1930

    Article  Google Scholar 

  • Havskov J, Ottemoller L (2010) Routine data processing in earthquake seismology. Springer, Netherlands, Dordrecht, p 347. doi:10.1007/978-90-481-8697-6

    Book  Google Scholar 

  • Hutton LK, Boore DM (1987) The ML scale in Southern California. Bull Seismol Soc Am 77:2074–2094

    Google Scholar 

  • IGP (2016) Geophysical institute of Peru (IGP) Catalog: http://www.igp.gob.pe/bdsismos/ultimosSismosSentidos.php

  • Kanamori H, Jennings PC (1978) Determination of local magnitude, ML, from strong motion accelerogram. Bull Seismol Soc Am 68:471–485

    Google Scholar 

  • Kanamori H (1980) The size of earthquakes. Earthquake Information Bulletin 12:10–15

    Google Scholar 

  • Keir D, Stuart GW, Jackson A, Ayele A (2006) Local earthquake magnitude scale and seismicity rate for the Ethiopian Rift. Bull Seismol Soc Am 96:2221–2230

    Article  Google Scholar 

  • Kim W (1998) The ML scale in Eastern North America. Bull Seismol Soc Am 88:935–951

    Google Scholar 

  • Lolli B, Gasperini P, Mele FM, Vannucci G (2015) Recalibration of the distance correction term for local magnitude (m L ) computations in Italy. Seismol Res Lett 86:1383–1392

    Article  Google Scholar 

  • Miao Q, Langston CA (2007) Empirical distance attenuation and the local-magnitude scale for the central United States. Bull Seismol Soc Am 97:2137–2151

    Article  Google Scholar 

  • Norabuena EO, Dixon TH, Stein S, Harrison CGA (1999) Decelerating Nazca-South America and Nazca-Pacific Plate motions. Geophys Res Lett 26:3405–3408

    Article  Google Scholar 

  • Renjifo F, Anibal O (2004) Inversión de Amplitudes de registros sísmicos para el cálculo de Magnitud ML en Colombia, en: I Congreso Latinoamericano de Sismología. II Congreso, Colombiano de Sismología. Armenia, Agosto 16 al 21 de 2004

  • Richter CF (1935) An instrumental earthquake magnitude scale. Bull Seismol Soc Am 25:1–31

    Google Scholar 

  • Richter CF (1958) Elementary seismology, vol 2. W. H. Freeman and Co., San Francisco, p 768

    Google Scholar 

  • Saunders I, Ottemöller L., Brandt MBC, Fourie CJS (2013) Calibration of an ML scale for South Africa using tectonic earthquake data recorded by the South African National Seismograph Network: 2006 to 2009. J Seismol 17:437–451

    Article  Google Scholar 

  • Uhrhammer RA, Collins ER (1990) Synthesis of Wood-Anderson seismograms from broadband digital records. Bull Seismol Soc Am 80:702–716

    Google Scholar 

  • Uhrhammer RA, Loper S, Romanowicz B (1996) Determination of local magnitude using BDSN broadband records. Bull Seismol Soc Am 86:1314–1330

    Google Scholar 

  • Vidal A, Munguía L (1999) The ML scale in Northern Baja California, México. Bull. Seism. Soc. Am. 89(3):750–763

    Google Scholar 

  • Villegas JC (2009) Proceesing and Analysis of the LISN permanent GPS network: preliminary tectonic results. Nice-France

  • Wu YM, Richard MA, Wu CF (2005) Revised ML determination for crustal earthquakes in Taiwan. Bull Seismol Soc Am 95:2517–2524

    Article  Google Scholar 

Download references

Acknowledgments

We would like to express our gratitude towards those at the Centro Nacional de Monitoreo Sísmico-Acelerométrico and Centro de Redes Geofísicas, for allowing us to use IGP’s earthquake data, waveform data and the instrumental responses of the RSN. Marcelo Peres Rocha and George Sand França thanks the Brazilian National Counsel of Technological and Scientific Development (CNPq) for Research Productivity Grant. The authors thank the reviewers for their helpful comments and corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristobal Condori.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Condori, C., Tavera, H., Marotta, G.S. et al. Calibration of the local magnitude scale (M L ) for Peru. J Seismol 21, 987–999 (2017). https://doi.org/10.1007/s10950-017-9647-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10950-017-9647-3

Keywords

Navigation