Skip to main content
Log in

Synthesis and Characterization of Dendrimer-Encapsulated Iron and Iron-Oxide Nanoparticles

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this paper, a series of iron (Fe) containing nanoparticles were prepared by employing PAMAM (Poly(amidoamine), dendrimers with different generations (G0–G3) as templates and sodium borohydride as a reducing agent. The products have been characterized by TEM, FT-IR, XRD, VSM, TGA, and XPS. XRD analysis reveal low crystallinity of formed particles within the dendrimers, however, crystallinity of the nanoparticles was observed to increase with increasing generation of dendrimers. Dominant phases were determined as magnetite (Fe3O4 or maghemite, γ-Fe2O3). XPS analysis revealed the chemical composition of nanoparticles as iron oxide which indicated the oxidation of Fe species subsequent to the reduction process, in agreement with XRD analysis. The magnetization curves have superparamagnetic nonhysteretic characteristic at lower fields and with nonsaturation characteristic at high fields. Magnetic evaluation of samples with the 20:1 molar ratio of Fe:PAMAM showed decreasing superparamagnetic character and decreasing saturation magnetisation with increasing generation of dendrimers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lu, A.-H., Salabas, E.L., Schüth, F.: Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem., Int. Ed. 46(8), 1222–1244 (2007). doi:10.1002/anie.200602866

    Article  Google Scholar 

  2. Lu, A.-H., Schmidt, W., Matoussevitch, N., Bönnemann, H., Spliethoff, B., Tesche, B., Bill, E., Kiefer, W., Schüth, F.: Nanoengineering of a magnetically separable hydrogenation catalyst. Angew. Chem., Int. Ed. 43(33), 4303–4306 (2004). doi:10.1002/anie.200454222

    Article  Google Scholar 

  3. Hyeon, T.: Chemical synthesis of magnetic nanoparticles. Chem. Commun. 8, 927–934 (2003)

    Article  Google Scholar 

  4. Ross, C.: Patterned magnetic recording media. Annu. Rev. Mater. Res. 31(1), 203–235 (2001). doi:10.1146/annurev.matsci.31.1.203

    Article  ADS  Google Scholar 

  5. Song, J., Kong, H., Jang, J.: Adsorption of heavy metal ions from aqueous solution by polyrhodanine-encapsulated magnetic nanoparticles. J. Colloid Interface Sci. 359(2), 505–511 (2011)

    Article  Google Scholar 

  6. Chikazumi, S., Taketomi, S., Ukita, M., Mizukami, M., Miyajima, H., Setogawa, M., Kurihara, Y.: Physics of magnetic fluids. J. Magn. Magn. Mater. 65(2–3), 245–251 (1987)

    Article  ADS  Google Scholar 

  7. Sun, C., Lee, J.S.H., Zhang, M.: Magnetic nanoparticles in MR imaging and drug delivery. Adv. Drug Deliv. Rev. 60(11), 1252–1265 (2008)

    Article  Google Scholar 

  8. McBain, S.C., Yiu, H.H., Dobson, J.: Magnetic nanoparticles for gene and drug delivery. Int. J. Nanomed. 3(2), 12 (2008). http://dx.doi.org/10.2147/IJNS1608

    Google Scholar 

  9. Pankhurst, Q.A., et al.: Applications of magnetic nanoparticles in biomedicine. J. Phys. D, Appl. Phys. 36(13), R167 (2003)

    Article  ADS  Google Scholar 

  10. Zhang, C., Liu, T., Gao, J., Su, Y., Shi, C.: Recent development and application of magnetic nanoparticles for cell labeling and imaging. Mini-Rev. Med. Chem. 10(3), 194–203 (2010)

    Article  Google Scholar 

  11. Hariharan, S.G.: James: superparamagnetism and magnetocaloric effect in functional magnetic nanostructures. Rev. Adv. Mater. Sci. 10(5), 5 (2005)

    Google Scholar 

  12. Liu, X., Geng, D., Jiang, J., Li, B., Ma, S., Li, D., Liu, W., Zhang, Z.: Magnetic properties and large cryogenic low-field magnetocaloric effect of HoCo2 nanoparticles without core/shell structure. J. Nanopart. Res. 12(4), 1167–1172 (2010). doi:10.1007/s11051-009-9717-8

    Article  Google Scholar 

  13. Kanel, S.R., Manning, B., Charlet, L., Choi, H.: Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environ. Sci. Technol. 39(5), 1291–1298 (2005). doi:10.1021/es048991u

    Article  Google Scholar 

  14. Huang, C.-C., Lo, S.-L., Tsai, S.-M., Lien, H.-L.: Catalytic hydrodechlorination of 1,2-dichloroethane using copper nanoparticles under reduction conditions of sodium borohydride. J. Environ. Monit. 13(9), 2406–2412 (2011)

    Article  Google Scholar 

  15. Cook, S.M.: Assessing the use and application of zero-valent iron nanoparticle technology for remediation at contaminated sites in. Jackson State University (2009)

  16. Myers, V.S., Weir, M.G., Carino, E.V., Yancey, D.F., Pande, S., Crooks, R.M.: Dendrimer-encapsulated nanoparticles: new synthetic and characterization methods and catalytic applications. Chem. Sci. 2(9), 1632–1646 (2011)

    Article  Google Scholar 

  17. Scott, R.W.J., Wilson, O.M., Crooks, R.M.: Synthesis, characterization, and applications of dendrimer-encapsulated nanoparticles. J. Phys. Chem. B 109(2), 692–704 (2004). doi:10.1021/jp0469665

    Article  Google Scholar 

  18. Jin, L., Yang, S.-P., Wu, H.-X., Huang, W.-W., Tian, Q.-W.: Preparation and characterization of silver nanoparticles with dendrimers as templates. J. Appl. Polym. Sci. 108(6), 4023–4028 (2008). doi:10.1002/app.28056

    Article  Google Scholar 

  19. Crooks, R., Lemon, B., Sun, L., Yeung, L., Zhao, M.: Dendrimer-encapsulated metals and semiconductors: synthesis, characterization, and applications dendrimers III. In: Vögtle, F. (ed.) Topics in Current Chemistry, vol. 212, pp. 81–135. Springer, Berlin (2001)

    Google Scholar 

  20. Liu, D., López-De Jesús, Y.M., Monnier, J.R., Williams, C.T.: Preparation, characterization, and kinetic evaluation of dendrimer-derived bimetallic Pt–Ru/SiO2 catalysts. J. Catal. 269(2), 376–387 (2010)

    Article  Google Scholar 

  21. Zhao, M., Crooks, R.M.: Homogeneous hydrogenation catalysis with monodisperse, dendrimer-encapsulated Pd and Pt nanoparticles. Angew. Chem., Int. Ed. 38(3), 364–366 (1999). doi:10.1002/(sici)1521-3773(19990201)38:3<364::aid-anie364>3.0.co;2-l

    Article  Google Scholar 

  22. Crooks, R.M., Zhao, M., Sun, L., Chechik, V., Yeung, L.K.: Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. Acc. Chem. Res. 34(3), 181–190 (2000). doi:10.1021/ar000110a

    Article  Google Scholar 

  23. Gröhn, F., Bauer, B.J., Akpalu, Y.A., Jackson, C.L., Amis, E.J.: Dendrimer templates for the formation of gold nanoclusters. Macromolecules 33(16), 6042–6050 (2000). doi:10.1021/ma000149v

    Article  ADS  Google Scholar 

  24. Li, C., Liu, H., Sun, Y., Wang, H., Guo, F., Rao, S., Deng, J., Zhang, Y., Miao, Y., Guo, C., Meng, J., Chen, X., Li, L., Li, D., Xu, H., Wang, H., Li, B., Jiang, C.: PAMAM nanoparticles promote acute lung injury by inducing autophagic cell death through the Akt-TSC2-mTOR signaling pathway. J. Mol. Cell Biol. 1(1), 37–45 (2009). doi:10.1093/jmcb/mjp002

    Article  Google Scholar 

  25. Seo, Y.-S., Kim, K.-S., Shin, K., White, H., Rafailovich, M., Sokolov, J., Lin, B., Kim, H.J., Zhang, C., Balogh, L.: Morphology of amphiphilic gold/dendrimer nanocomposite monolayers. Langmuir 18(15), 5927–5932 (2002). doi:10.1021/la025504k

    Article  Google Scholar 

  26. Kavas, H., Durmus, Z., Tanrıverdi, E., Şenel, M., Sozeri, H., Baykal, A.: Fabrication and characterization of dendrimer-encapsulated monometallic Co nanoparticles. J. Alloys Compd. 509(17), 5341–5348 (2011)

    Article  Google Scholar 

  27. Chechik, V., Zhao, M., Crooks, R.M.: Self-assembled inverted micelles prepared from a dendrimer template: phase transfer of encapsulated guests. J. Am. Chem. Soc. 121(20), 4910–4911 (1999). doi:10.1021/ja990445r

    Article  Google Scholar 

  28. Oh, S.-K., Kim, Y.-G., Ye, H., Crooks, R.M.: Synthesis, characterization, and surface immobilization of metal nanoparticles encapsulated within bifunctionalized dendrimers. Langmuir 19(24), 10420–10425 (2003). doi:10.1021/la0353778

    Article  Google Scholar 

  29. Chechik, V., Crooks, R.M.: Dendrimer-encapsulated pd nanoparticles as fluorous phase-soluble catalysts. J. Am. Chem. Soc. 122(6), 1243–1244 (2000). doi:10.1021/ja9936870

    Article  Google Scholar 

  30. Li, Y., El-Sayed, M.A.: The effect of stabilizers on the catalytic activity and stability of Pd colloidal nanoparticles in the Suzuki reactions in aqueous solution. J. Phys. Chem. B 105(37), 8938–8943 (2001). doi:10.1021/jp010904m

    Article  Google Scholar 

  31. Rahim, E.H., Kamounah, F.S., Frederiksen, J., Christensen, J.B.: Heck reactions catalyzed by PAMAM-dendrimer encapsulated Pd(0) nanoparticles. Nano Lett. 1(9), 499–501 (2001). doi:10.1021/nl015574w

    Article  ADS  Google Scholar 

  32. Kim, Y.-G., Oh, S.-K., Crooks, R.M.: Preparation and characterization of 1–2 nm dendrimer-encapsulated gold nanoparticles having very narrow size distributions. Chem. Mater. 16(1), 167–172 (2003). doi:10.1021/cm034932o

    Article  Google Scholar 

  33. Esumi, K., Suzuki, A., Aihara, N., Usui, K., Torigoe, K.: Preparation of gold colloids with UV irradiation using dendrimers as stabilizer. Langmuir 14(12), 3157–3159 (1998). doi:10.1021/la980162x

    Article  Google Scholar 

  34. Michels, J.J., Huskens, J., Reinhoudt, D.N.: Dendrimer-cyclodextrin assemblies as stabilizers for gold and platinum nanoparticles. J. Chem. Soc., Perkin Trans. 2 2002(1), 102–105 (2002)

    Google Scholar 

  35. Niu, Y., Yeung, L.K., Crooks, R.M.: Size-selective hydrogenation of olefins by dendrimer-encapsulated palladium nanoparticles. J. Am. Chem. Soc. 123(28), 6840–6846 (2001). doi:10.1021/ja0105257

    Article  Google Scholar 

  36. Scott, R.W.J., Ye, H., Henriquez, R.R., Crooks, R.M.: Synthesis, characterization, and stability of dendrimer-encapsulated palladium nanoparticles. Chem. Mater. 15(20), 3873–3878 (2003). doi:10.1021/cm034485c

    Article  Google Scholar 

  37. Scott, R.W.J., Wilson, O.M., Oh, S.-K., Kenik, E.A., Crooks, R.M.: Bimetallic palladium-gold dendrimer-encapsulated catalysts. J. Am. Chem. Soc. 126(47), 15583–15591 (2004). doi:10.1021/ja0475860

    Article  Google Scholar 

  38. Niu, Y., Crooks, R.M.: Dendrimer-encapsulated metal nanoparticles and their applications to catalysis. C. R., Chim. 6(8–10), 1049–1059 (2003)

    Article  Google Scholar 

  39. Tomalia, D.A., Naylor, A.M., Goddard, W.A.: Starburst dendrimers: molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew. Chem., Int. Ed. Engl. 29(2), 138–175 (1990). doi:10.1002/anie.199001381

    Article  Google Scholar 

  40. Endo, T., Yoshimura, T., Esumi, K.: Synthesis and catalytic activity of gold–silver binary nanoparticles stabilized by PAMAM dendrimer. J. Colloid Interface Sci. 286(2), 602–609 (2005)

    Article  Google Scholar 

  41. Tan, H., Luo, Y.J.: Dendritic Polymer. Chemical Industry Press, Beijing (2002)

    Google Scholar 

  42. Jin, L., Yang, S.-P., Tian, Q.-W., Wu, H.-X., Cai, Y.-J.: Preparation and characterization of copper metal nanoparticles using dendrimers as protectively colloids. Mater. Chem. Phys. 112(3), 977–983 (2008)

    Article  Google Scholar 

  43. Socrates, G.: Infrared and Raman Characteristic Group Frequencies: Tables and Charts. Wiley, Chichester (2000)

    Google Scholar 

  44. Liu, D., Gao, J., Murphy, C.J., Williams, C.T.: In situ attenuated total reflection infrared spectroscopy of dendrimer-stabilized platinum nanoparticles adsorbed on alumina. J. Phys. Chem. B 108(34), 12911–12916 (2004). doi:10.1021/jp048879i

    Article  Google Scholar 

  45. Pielaszek, R.: Analytical expression for diffraction line profile for polydispersive powders. In: 19th Conference on Applied Crystallography, Kraków, Poland, 2003, pp. 43–50. World Scientific, Singapore (2003)

    Google Scholar 

  46. Wejrzanowski, T., Pielaszek, R., Opalińska, A., Matysiak, H., Łojkowski, W., Kurzydłowski, K.J.: Quantitative methods for nanopowders characterization. Appl. Surf. Sci. 253(1), 204–208 (2006)

    Article  ADS  Google Scholar 

  47. Pan, B.-F., Gao, F., Gu, H.-C.: Dendrimer modified magnetite nanoparticles for protein immobilization. J. Colloid Interface Sci. 284(1), 1–6 (2005)

    Article  Google Scholar 

  48. Joyner, D.J., Johnson, O., Hercules, D.M.: A study of the iron borides. 1. Electron spectroscopy. J. Am. Chem. Soc. 102(6), 1910–1917 (1980). doi:10.1021/ja00526a025

    Article  Google Scholar 

  49. Tan, B.J., Klabunde, K.J., Sherwood, P.M.A.: X-ray photoelectron spectroscopy studies of solvated metal atom dispersed catalysts. Monometallic iron and bimetallic iron-cobalt particles on alumina. Chem. Mater. 2(2), 186–191 (1990). doi:10.1021/cm00008a021

    Article  Google Scholar 

  50. Hawn, D.D., DeKoven, B.M.: Deconvolution as a correction for photoelectron inelastic energy losses in the core level XPS spectra of iron oxides. Surf. Interface Anal. 10(2–3), 63–74 (1987). doi:10.1002/sia.740100203

    Article  Google Scholar 

  51. Brion, D.: Etude par spectroscopie de photoelectrons de la degradation superficielle de FeS2, CuFeS2, ZnS et PbS a l’air et dans l’eau. Appl. Surf. Sci. 5(2), 133–152 (1980)

    Article  Google Scholar 

  52. Fujii, T., de Groot, F.M.F., Sawatzky, G.A., Voogt, F.C., Hibma, T., Okada, K.: In situ XPS analysis of various iron oxide films grown by NO_{2}-assisted molecular-beam epitaxy. Phys. Rev. B 59(4), 3195–3202 (1999)

    Article  ADS  Google Scholar 

  53. Durmus, Z., Kavas, H., Baykal, A., Sozeri, H., Alpsoy, L., Çelik, S.Ü., Toprak, M.S.: Synthesis and characterization of l-carnosine coated iron oxide nanoparticles. J. Alloys Compd. 509(5), 2555–2561 (2011)

    Article  Google Scholar 

  54. Kodama, R.H., Berkowitz, A.E., McNiff, J.E.J., Foner, S.: Surface spin disorder in NiFe2O4 nanoparticles. Phys. Rev. Lett. 77(2), 394–397 (1996)

    Article  ADS  Google Scholar 

  55. Unal, B., Toprak, M., Durmus, Z., Sözeri, H., Baykal, A.: Synthesis, structural and conductivity characterization of alginic acid–Fe3O4 nanocomposite. J. Nanopart. Res. 12(8), 3039–3048 (2010). doi:10.1007/s11051-010-9898-1

    Article  Google Scholar 

  56. Kittel, C.: Introduction to Solid State Physics. Wiley, New York (1971)

    Google Scholar 

  57. Aydın, M., Ünal B., Esat, B., Baykal, A., Karaoglu, E., Toprak, M.S., Sözeri, H.: Synthesis, magnetic and electrical characteristics of poly(2-thiophen-3-yl-malonic acid)/Fe3O4 nanocomposite. J. Alloys Compd. 514, 45–53 (2012)

    Article  Google Scholar 

  58. Gómez-Lopera, S.A., Plaza, R.C., Delgado, A.V.: Synthesis and characterization of spherical magnetite/biodegradable polymer composite particles. J. Colloid Interface Sci. 240(1), 40–47 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Fatih University, Research Project Foundation (Contract nos: P50021104-B and P50021104-G), and Turkish Ministry of Industry and TUBITAK (Contract no: 110T487) for financial support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Baykal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baykal, A., Toprak, M.S., Durmus, Z. et al. Synthesis and Characterization of Dendrimer-Encapsulated Iron and Iron-Oxide Nanoparticles. J Supercond Nov Magn 25, 1541–1549 (2012). https://doi.org/10.1007/s10948-012-1454-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-012-1454-z

Keywords

Navigation