Skip to main content
Log in

Macroscopic Quantum Phenomena in High Critical Temperature Superconducting Josephson Junctions

  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

YBa2Cu3O7−δ grain boundary bi-epitaxial Josepshon junctions (JJs) allow a very clear demonstration of Josephson current variation with the misorientation angle, consistent with the d-wave symmetry of the superconducting order parameter in cuprate, high temperature superconductors. Our bi-epitaxial junctions show a strong suppression of the first harmonic, I 1 sin ø, of the current phase relation when tunneling from a lobe into a node of the superconducting gap function. In these configurations, the contribution of the second harmonic, I 2 sin 2ø, becomes of the same magnitude as the first one, giving rise to a characteristic two-well Josephson potential as a function of phase ø instead of the usual single well. This characteristic intrinsic property has suggested proposals of a new class of qu-bit named “quiet” because of the existence a spontaneously degenerate fundamental state without the need of applying an external field. Our experiments probe the macroscopic quantum properties in a d-wave Josephson junction by measuring macroscopic quantum tunneling and energy level quantization. The switching current out of the zero voltage state is measured as a function of temperature down to 20 mK. The temperature variation of the width of an ensemble of switching events goes over from one, which is characteristic of a thermal activation of phase fluctuations to a temperature independent width which is a token of quantum tunneling of the phase. The transition regime is affected by the two-well potential in a 45 misorientation junction as the second harmonic term gives rise to additional thermal transitions. The difference between quantized energy levels in the harmonic potential was determined by microwave spectroscopy. From the broadening of energy levels, it was possible to extract a Q-value of about 40 for the phase oscillations. The relatively high Q indicates quantum coherence over a sizeable time in d-wave junctions and gives hopes for a realization of a “quiet” high-T c qu-bit. The contributions of V. L. Ginzburg to several different fields of physics are impressive and long standing. In superconductivity the Ginzburg–Landau theory, for instance, still represents a very powerful approach to model a huge number of different physical systems. High Temperature Superconductors (HTS) have strongly influenced research of the last 20 years and their d-wave order parameter symmetry represents one of the most intriguing features from both the fundamental point of view and some types of innovative long-term applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1 C. C. Tsuei and J. R. Kirtley, Rev. Mod. Phys. 72, 969 (2000).

    Article  ADS  Google Scholar 

  2. 2 D. Van Harlingen, Rev. Mod. Phys. 67, 515 (1995).

    Article  ADS  Google Scholar 

  3. 3 V. B. Geshkenbein, A. I. Larkin, and A. Barone, Phys. Rev. B 36, 235 (1987).

    Article  ADS  Google Scholar 

  4. 4 M. Sigrist and T. M. Rice, J. Phys. Soc. Jpn. 61, 4283 (1992); Rev. Mod. Phys. 67, 503 (1995).

    Article  ADS  Google Scholar 

  5. 5 D. A. Wollman, D. J. Van Harlingen, W. C. Lee, D. M. Ginsberg, and A. J. Leggett, Phys. Rev. Lett. 71, 2134 (1993).

    Article  ADS  Google Scholar 

  6. 6 C. C. Tsuei, J. R. Kirtley, C. C. Chi, Lock See Yu-Jahnes, A. Gupta, T. Shaw, J. Z. Sun, and M. B. Ketchen, Phys. Rev. Lett. 73, 593 (1994).

    Article  ADS  Google Scholar 

  7. 7 F. Tafuri and J. R. Kirtley, Rep. Prog. Phys. 68, 2573 (2005).

    Article  ADS  Google Scholar 

  8. 8 A. F. Andreev, Zh. Eksp. Teor. Fiz. 46, 1823 (1964) (Sov. Phys. JETP 19, 1228).

    Google Scholar 

  9. 9 C.-R. Hu, Phys. Rev. Lett. 72, 1526 (1994).

    Article  ADS  Google Scholar 

  10. 10 M. Sigrist, Progr. Theor. Physics 99, 899 (1998); T. Lofwander, V. Shumeiko, and G. Wendin, Supercond. Sci. Tech. 14, R53 (2001); S. Kashiwaya and Y. Tanaka. Rep. Prog. Phys. 63, 1641 (2000).

    Article  ADS  Google Scholar 

  11. 11 A. A. Golubov, M. Yu. Kupryanov, and E. Ilichev, Rev. Mod. Phys. 76, 411 (2004).

    Article  ADS  Google Scholar 

  12. 12 E. Ilichev, V. Zakosarenko, R. P. J. Ijsselsteijn, H. E. Hoenig, V. Schultze, H. G. Meyer, M. Grajcar, and R. Hlubina, Phys. Rev. B 60, 3096 (1999); E. Il'ichev et al., Phys. Rev. Lett. 86, 5369 (2001).

    ADS  Google Scholar 

  13. 13 T. Lindstrom, S. A. Charlebois, A. Ya. Tzalenchuk, Z. Ivanov, M. H. S. Amin, and A. M. Zagoskin, Phys. Rev. Lett. 90 117002 (2003).

    Article  ADS  Google Scholar 

  14. 14 G. Testa, E. Sarnelli, A. Monaco, E. Esposito, M. Ejrnaes, D. J. Kang, S. H. Mennema, E. J. Tarte, and M. G. Blamire, Phys. Rev. B 71 134520 (2005).

    ADS  Google Scholar 

  15. 15 F. Lombardi, F. Tafuri, F. Ricci, F. Miletto Granozio, A. Barone, G. Testa, E. Sarnelli, J. R. Kirtley, and C. C. Tsuei, Phys. Rev. Lett. 89, 207001 (2002).

    Article  ADS  Google Scholar 

  16. 16 F. Tafuri, F. Miletto Granozio, F. Carillo, A. Di Chiara, K. Verbist, and G. Van Tendeloo, Phys. Rev. B 59, 11523 (1999); F. Tafuri, F. Carillo, F. Lombardi, F. Miletto Granozio, F. Ricci, U. Scotti di Uccio, A. Barone, G. Testa, E. Sarnelli, and J. R. Kirtley, Phys. Rev. B 62, 14431 (2000).

    ADS  Google Scholar 

  17. 17 T. Bauch., F. Lombardi, F. Tafuri, A. Barone, G. Rotoli, P. Delsing, and T. Claeson, Phys. Rev. Lett. 94, 87003 (2005).

    Article  ADS  Google Scholar 

  18. 18 L. B. Ioffe, V. B. Geshkenbein, M. V. Feigel'man, A. L. Fauchere, and G. Blatter, Nature 398 679 (1999); G. Blatter, V. B. Geshkenbein, and L. B. Ioffe, Phys. Rev. B 63, 174511 (2001).

    Article  ADS  Google Scholar 

  19. 19 A. Blais and A. M. Zagoskin, Phys. Rev. A 61, 42308 (2000).

    ADS  Google Scholar 

  20. 20 Y. Makhlin, G. Schon, and A. Shnirman, Rev. Mod. Phys. 73, 357 (2001).

    Article  ADS  Google Scholar 

  21. 21 A. Zagoskin, Cond. Mat. 0506039 (2005).

  22. 22 M. H. S. Amin, et al., Phys. Rev. B 71, 064516 (2005).

    ADS  Google Scholar 

  23. 23 Ya. V. Fominov, A. A. Golubov, and M. Yu. Kypryanov, JETP Lett. 77, 587 (2003).

    Article  ADS  Google Scholar 

  24. 24 M. H. S. Amin and A. Yu. Smirnov, Phys. Rev. Lett. 92, 17001 (2004).

    Article  ADS  Google Scholar 

  25. 25 C. C. Tsuei and J. R. Kirtley, Physica C 367, 1 (2002).

    ADS  Google Scholar 

  26. 26 Y. Nakamura, Y. A. Pashkin, and J. S. Tsai, Nature 398, 786 (1999).

    Article  ADS  Google Scholar 

  27. 27 J. R. Friedman, V. Patel, W. Chen, S. K. Tolpygo, and J. E. Lukens, Nature 406, 43 (2000).

    Article  ADS  Google Scholar 

  28. 28 T. Duty, D. Gunnarson, K. Bladh, and P. Delsing, Phys. Rev. B 69, 140503 (2004).

    ADS  Google Scholar 

  29. 29 D. Vion, et al., Science 296, 886 (2002).

    Article  ADS  Google Scholar 

  30. 30 J. M. Martinis, S. Nam, J. Aumentado, and C. Urbina, Phys. Rev. Lett. 89, 117901 (2002).

    Article  ADS  Google Scholar 

  31. 31 I. Chiorescu, Y. Nakamura, C. J. P. M. Harmans, and J. E. Mooij, Science 299, 1869 (2003).

    Article  ADS  Google Scholar 

  32. 32 T. Yamamoto, Y. A. Pashkin, O. Astafiev, Y. Nakamura, and J. S. Tsai, Nature 425, 941 (2003).

    Article  ADS  Google Scholar 

  33. 33 A. O. Caldeira and A. J. Leggett, Ann. Phys. (N.Y.) 149, 374 (1983).

    Article  ADS  Google Scholar 

  34. 34 M. H. Devoret, J. M. Martinis, and J. Clarke, Phys. Rev. Lett. 55, 1908 (1985); J. M. Martinis, M. H. Devoret, and J. Clarke, Phys. Rev. B 35, 4682 (1987).

    Article  ADS  Google Scholar 

  35. 35 W. C. Stewart, Appl. Phys. Lett. 12, 277 (1968).

    Article  Google Scholar 

  36. 36 D. E. McCumber, J. Appl. Phys. 39, 3133 (1968).

    ADS  Google Scholar 

  37. 37 H. A. Kramers, Physica (Utrecht) 7, 284 (1940).

    Article  ADS  MathSciNet  Google Scholar 

  38. 38 A. B. Zorin, Rev. Sci. Inst. 66, 4296 (1995).

    Article  ADS  Google Scholar 

  39. 39 T. Bauch, T. Lindström, F. Tafuri, G. Rotoli, P. Delsing, T. Claeson, and F. Lombardi, Science 311, 57 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Claeson, T., Lombardi, F., Bauch, T. et al. Macroscopic Quantum Phenomena in High Critical Temperature Superconducting Josephson Junctions. J Supercond 19, 341–347 (2006). https://doi.org/10.1007/s10948-006-0168-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-006-0168-5

Keywords

Navigation