Skip to main content
Log in

Discontinuous Galerkin Approximation of Linear Parabolic Problems with Dynamic Boundary Conditions

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper we propose and analyze a Discontinuous Galerkin method for a linear parabolic problem with dynamic boundary conditions. We present the formulation and prove stability and optimal a priori error estimates for the fully discrete scheme. More precisely, using polynomials of degree \(p\ge 1\) on meshes with granularity h along with a backward Euler time-stepping scheme with time-step \(\Delta t\), we prove that the fully-discrete solution is bounded by the data and it converges, in a suitable (mesh-dependent) energy norm, to the exact solution with optimal order \(h^p + \Delta t\). The sharpness of the theoretical estimates are verified through several numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, Volume 140 of Pure and Applied Mathematics (Amsterdam), 2nd edn. Elsevier/Academic Press, Amsterdam (2003)

    Google Scholar 

  2. Antonietti, P.F., Dedner, A., Madhavan, P., Stangalino, S., Stinner, B., Verani, M.: High order discontinuous Galerkin methods for elliptic problems on surfaces. SIAM J. Numer. Anal. 53(2), 1145–1171 (2015)

    Article  MathSciNet  Google Scholar 

  3. Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19(4), 742–760 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2001/02)

  5. Brenner, S.C.: Poincaré–Friedrichs inequalities for piecewise \(H^1\) functions. SIAM J. Numer. Anal. 41(1), 306–324 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cherfils, L., Petcu, M., Pierre, M.: A numerical analysis of the Cahn–Hilliard equation with dynamic boundary conditions. Discrete Contin. Dyn. Syst. 27(4), 1511–1533 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ciarlet, P. G.: The finite element method for elliptic problems, volume 40 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA. Reprint of the 1978 original [North-Holland, Amsterdam] (2002)

  8. Dedner, A., Madhavan, P., Stinner, B.: Analysis of the discontinuous Galerkin method for elliptic problems on surfaces. IMA J. Numer. Anal. 33(3), 952–973 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dziuk, G.: Finite elements for the Beltrami operator on arbitrary surfaces. In: Partial differential equations and calculus of variations, volume 1357 of Lecture Notes in Math., pp. 142–155. Springer, Berlin (1988)

  10. Eriksson, K., Johnson, C.: Adaptive finite element methods for parabolic problems. I. A linear model problem. SIAM J. Numer. Anal. 28(1), 43–77 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Eriksson, K., Johnson, C.: Adaptive finite element methods for parabolic problems. II. Optimal error estimates in \(L_\infty L_2\) and \(L_\infty L_\infty \). SIAM J. Numer. Anal. 32(3), 706–740 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Evans, L.C.: Partial Differential Equations, Volume 19 of Graduate Studies in Mathematics, 2nd edn. American Mathematical Society, Providence, RI (2010)

    Google Scholar 

  13. Fischer, H.P., Maass, P., Dieterich, W.: Novel surface modes in spinodal decomposition. Phys. Rev. Lett. 79, 893–896 (1997)

    Article  Google Scholar 

  14. Fischer, H.P., Maass, P., Dieterich, W.: Diverging time and length scales of spinodal decomposition modes in thin films. Eur. Phys. Lett. 62, 49–54 (1998)

    Article  Google Scholar 

  15. Fontelos, M.A., Grün, G., Jorres, S.: On a phase-field model for electrowetting and other electrokinetic phenomena. SIAM J. Math. Anal. 43(1), 527–563 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gilardi, G., Miranville, A., Schimperna, G.: Long time behavior of the Cahn–Hilliard equation with irregular potentials and dynamic boundary conditions. Chin. Ann. Math. Ser. B 31(5), 679–712 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods, Volume 54 of Texts in Applied Mathematics, vol. 54. Springer, New York (2008)

    Book  Google Scholar 

  18. Hintermann, T.: Evolution equations with dynamic boundary conditions. Proc. R. Soc. Edinb. Sect. A 113(1–2), 43–60 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jamet, P.: Galerkin-type approximations which are discontinuous in time for parabolic equations in a variable domain. SIAM J. Numer. Anal. 15(5), 912–928 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kashiwabara, T., Colciago, C., Dedé, L., Quarteroni, A.: Well-posedness, regularity, and convergence analysis of the finite element approximation of a Generalized Robin boundary value problem. SIAM J. Numer. Anal. 53(1), 105–126 (2015)

  21. Kay, D., Styles, V., Süli, E.: Discontinuous Galerkin finite element approximation of the Cahn–Hilliard equation with convection. SIAM J. Numer. Anal. 47(4), 2660–2685 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kenzler, R., Eurich, F., Maass, P., Rinn, B., Schropp, J., Bohl, E., Dieterich, W.: Phase separation in confined geometries: solving the Cahn–Hilliard equation with generic boundary conditions. Comput. Phys. Commun. 133(2–3), 139–157 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Larsson, S., Thomée, V., Wahlbin, L.B.: Numerical solution of parabolic integro-differential equations by the discontinuous Galerkin method. Math. Comput. 67(221), 45–71 (1998)

    Article  MATH  Google Scholar 

  24. Lasaint, P., Raviart, P.-A.: On a finite element method for solving the neutron transport equation. In Mathematical aspects of finite elements in partial differential equations. In: Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1974, pp. 89–123. Publication No. 33. Math. Res. Center, Univ. of Wisconsin-Madison, Academic Press, New York (1974)

  25. Lions, J.-L., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications, vol. I. Springer, New York (1972)

    Book  Google Scholar 

  26. Nochetto, R.H., Salgado, A.J., Walker, S.W.: A diffuse interface model for electrowetting with moving contact lines. Math. Model. Method. Appl. Sci. (M3AS) 24(1), 67–111 (2014)

    Article  MathSciNet  Google Scholar 

  27. Perugia, I., Schötzau, D.: An \(hp\)-analysis of the local discontinuous Galerkin method for diffusion problems. In: Proceedings of the Fifth International Conference on Spectral and High Order Methods (ICOSAHOM-01) (Uppsala), volume 17, pp. 561–571 (2002)

  28. Qian, T., Wang, X.-P., Sheng, P.: A variational approach to moving contact line hydrodynamics. J. Fluid Mech. 564, 333–360 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Tech. Report LA-UR-73-479, Los Alamos Scientific Laboratory, Los Alamos, NM (1973)

  30. Rivière, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations, Volume 35 of Frontiers in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2008)

    Book  Google Scholar 

  31. Rivière, B., Wheeler, M.F.: A discontinuous Galerkin method applied to nonlinear parabolic equations. In: Discontinuous Galerkin methods (Newport, RI, 1999), volume 11 of Lect. Notes Comput. Sci. Eng., pp. 231–244. Springer, Berlin (2000)

  32. Schötzau, D., Schwab, C.: An \(hp\) a priori error analysis of the DG time-stepping method for initial value problems. Calcolo 37(4), 207–232 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  33. Schötzau, D., Schwab, C.: Time discretization of parabolic problems by the \(hp\)-version of the discontinuous Galerkin finite element method. SIAM J. Numer. Anal. 38(3), 837–875 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  34. Vázquez, J.L., Vitillaro, E.: On the Laplace equation with dynamical boundary conditions of reactive-diffusive type. J. Math. Anal. Appl. 354(2), 674–688 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Vázquez, J.L., Vitillaro, E.: Heat equation with dynamical boundary conditions of reactive-diffusive type. J. Differ. Equ. 250(4), 2143–2161 (2011)

    Article  MATH  Google Scholar 

  36. Wells, G.N., Kuhl, E., Garikipati, K.: A discontinuous Galerkin method for the Cahn–Hilliard equation. J. Comput. Phys. 218(2), 860–877 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors thank the anonymous Referees for their valuable comments leading to an improvement of the presentation of the results. The first and the fourth author have been partially funded by INdAM - GNCS Project 2015 “Non-standard numerical methds for geophysics”. The second author is a member of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica. The fourth author has been also partially supported by the Italian research grant Prin 2012 2012HBLYE4 “Metodologie innovative nella modellistica differenziale numerica”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Verani.

Appendix: Proof of Theorem 4.1

Appendix: Proof of Theorem 4.1

Proof of Theorem 4.1

As the proof follows is based on standard arguments (see, e.g., [12, Chapter 7.1]), we only sketch the main steps.

1. Construction of the discrete space Let \(\{e_i\}_{i\ge 1}\) be an orthonormal basis of \(L^2(\Omega )\) such that

$$\begin{aligned} \int _{\Omega } \nabla e_i \cdot \nabla z = \lambda _i \int _{\Omega } e_i z \quad \forall z\in H^1(\Omega ),\ i\ge 1, \end{aligned}$$

i.e., \(\lambda _i\) and \(e_i\) are respectively the eigenvalues and eigenfunctions of the weak form of eigenvalue problem \(-\Delta e = \lambda e\) with homogeneous Neumann and periodic boundary conditions on \(\Gamma _1\) and \(\Gamma _2\), respectively. Reordering \(\{e_i\}_{i\ge 1}\) such that \(\lambda _1=0\), it is easy to see that there holds

$$\begin{aligned} \int _{\Omega }\nabla e_i \cdot \nabla e_j = 0,\quad \text {for }\, i\ne j\quad \text {and }\quad \int _{\Omega }|\nabla e_i|^2=\lambda _i>0,\ \ \ \text { for } i>1. \end{aligned}$$

Let \(V^n=\text {span}\{e_i : i=1,\ldots ,n\}\), \(n\ge 1\), and let \(u_0^n\) be the \(L^2(\Omega )\)- projection of \(u_0\) on \(V^n\). Since the domain is regular, the eigenfunctions \(e_i\) belong to \(H^2(\Omega )\).

2. Finite-dimensional approximation of (17) We introduce the following finite dimensional problem: find \(u^n\in H^1(0,T;V^n)\) such that, for \(t\in (0,T)\),

$$\begin{aligned} {\left\{ \begin{array}{ll} (\partial _t u^n,z)_{L^2(\Omega )}+\lambda (\partial _t u^n,z)_{L^2(\Gamma _1)}+ a(u^n,z)=(f,z)_{L^2(\Omega )} +(g,z)_{L^2(\Gamma _1)},\\ {u^n}_{|t=0}=u_0^n, \end{array}\right. } \end{aligned}$$
(34)

for all \(z \in V^n\), In the sequel we prove that problem (34) admits a unique solution in \(H^1(0,T; V^n)\). We write

$$\begin{aligned} u^n(t)=\sum _{j=1}^n u_j(t)e_j. \end{aligned}$$

The problem (34) is equivalent to find \(\mathbf u =(u_1, \ldots , u_n)^T\in H^1(0,T;\mathbb {R}^n)\) such that, for each \(t\in (0,T)\),

$$\begin{aligned} {\left\{ \begin{array}{ll} M \dot{\mathbf {u}}(t) + A \mathbf {u}(t) = \mathbf {F}(t),\\ \mathbf {u}(0)=(u_{0,1}, \ldots , u_{0,n})^T, \end{array}\right. } \end{aligned}$$

where, for \(i,j=1,\ldots ,n\),

$$\begin{aligned} M_{ij}= & {} M^\Omega + \lambda M^{\Gamma _1}:=\delta _{ij}+ \lambda (e_i,e_j)_{L^2(\Gamma _1)},\\ A_{ij}= & {} a(e_i,e_j),\qquad F_{i}=(f,e_i)_{L^2(\Omega )} + (g,e_i)_{L^2(\Gamma _1)}, \qquad u_{0,i}=(u_0, e_i)_{L^2(\Omega )}. \end{aligned}$$

Since the matrix \(M^{\Gamma _1}\) is semi-positive definite, we see that M is positive definite. In addition, \(\mathbf {F}\in L^2(0, T; \mathbb {R}^{n})\) and \(A:\mathbb {R}^n\rightarrow \mathbb {R}^n\) is Lipschitz continuous. Therefore, by standard existence theory of ordinary differential equations, there exists a unique solution \(\mathbf {u}(t)\) for a.e. \(0\le t\le T\).

3. Energy estimates Taking \(z=u^n\) in (34) and using the Cauchy–Schwarz inequality, we obtain

$$\begin{aligned}&\frac{d}{dt}\left( ||u^n||_{L^2_\lambda (\Omega , \Gamma _1)}^2\right) + ||\nabla u^n||^2_{L^2(\Omega )} + \alpha ||u^n||^2_{L^2(\Gamma _1)} + \beta ||\nabla _\Gamma u^n||^2_{L^2(\Gamma _1)}\nonumber \\&\quad \lesssim ||u^n||_{L^2_\lambda (\Omega , \Gamma _1)}^2 +||f||^2_{L^2(\Omega )} + ||g||^2_{L^2(\Gamma _1)} \end{aligned}$$
(35)

for a.e. \(t \in [0,T]\). Using the differential form of the Gronwall’s inequality, data regularity and Lemma 6.1 we obtain

$$\begin{aligned} \max _{0\le t\le T}||u^n(t)||_{L^2_\lambda (\Omega ,\Gamma _1)} \lesssim ||u_0||_{L^2_\lambda (\Omega , \Gamma _1)}^2 +||f||^2_{L^2(0,T;L^2(\Omega ))} + ||g||^2_{L^2(0,T;L^2(\Gamma _1))}\le C. \end{aligned}$$

Integrating (35) in [0, T] and employing the above inequality together with data regularity and Lemma 6.1 we get

$$\begin{aligned} ||u^n||_{L^2(0,T;H^1_\lambda (\Omega ,\Gamma _1))}\lesssim ||u_0||_{L^2_\lambda (\Omega , \Gamma _1)}^2 +||f||^2_{L^2(0,T;L^2(\Omega ))} + ||g||^2_{L^2(0,T;L^2(\Gamma _1))}\le C. \end{aligned}$$

On the other hand, taking \(z=\partial _t u^n\) in (34), integrating in t and using the Cauchy–Schwarz inequality, we obtain, for every \(\tau \in (0,T]\),

$$\begin{aligned}&\frac{1}{2} \int _0^\tau ||\partial _t u^n||^2_{L^2_\lambda (\Omega ,\Gamma _1)} + \frac{1}{2}||\nabla u^n(\tau )||^2_{L^2(\Omega )} + \frac{\alpha }{2}||u^n(\tau )||^2_{L^2(\Gamma _1)} + \frac{\beta }{2}||\nabla _\Gamma u^n(\tau )||^2_{L^2(\Gamma _1)}\\&\quad \le \frac{1}{2}||\nabla u^n_0||^2_{L^2(\Omega )} + \frac{\alpha }{2}|| u^n_0||^2_{L^2(\Gamma _1)}+\frac{\beta }{2}||\nabla _\Gamma u^n_0||^2_{L^2(\Omega )}\\&\quad +\, \frac{1}{2} \int _0^\tau ||f||^2_{L^2(\Omega )} + \frac{1}{2\lambda } \int _0^\tau ||g||^2_{L^2(\Gamma _1)}, \end{aligned}$$

where the right-hand side of the above inequality can be bounded using Lemma 6.1 and data regularity.

Moreover, differentiating (34) with respect to t and setting \(\tilde{u}^n:= \partial _t u^n\) we get for any \(t\in [0,T]\)

$$\begin{aligned} (\partial _t \tilde{u}^n,z)_{L^2(\Omega )}+\lambda (\partial _t \tilde{u}^n,z)_{L^2(\Gamma _1)}+ a(\tilde{u}^n,z)=(\partial _t f,z)_{L^2(\Omega )} +(\partial _t g,z)_{L^2(\Gamma _1)}, \end{aligned}$$
(36)

for all \(z\in V^n\). Testing (36) with \(z=\tilde{u}^n\), it is easy to show that it holds

$$\begin{aligned}&\Vert \partial _t u^n\Vert ^2_{L_\lambda ^2(\Omega ,\Gamma _1)} + \int _0^t \Vert \partial _t u^n (s)\Vert ^2_{H_\lambda ^1(\Omega ,\Gamma _1)}\, ds \lesssim \int _0^t \Vert \partial _t f (s) \Vert ^2_{L^2(\Omega )}~ds \nonumber \\&\qquad + \int _0^t \Vert \partial _t g (s) \Vert ^2_{L^2(\Gamma _1) }\, ds + \Vert \partial _t u^n (0)\Vert ^2_{L_\lambda ^2(\Omega ,\Gamma _1)}. \end{aligned}$$
(37)

Taking \(t=0\) in (34), testing with \(z=\partial _t u^n (0)\), integrating by parts and employing the Cauchy–Schwarz inequality once more, we obtain

$$\begin{aligned} \Vert \partial _t u^n(0)\Vert ^2_{L^2_\lambda (\Omega ,\Gamma _1)} \lesssim \Vert u^n(0)\Vert ^2_{H^2_\lambda (\Omega ,\Gamma _1)} + \Vert f(0,\cdot ) \Vert ^2_{L^2(\Omega )} + \Vert g(0,\cdot ) \Vert ^2_{L^2(\Gamma _1)}, \end{aligned}$$

whose right-hand side can be bounded by resorting to compatibility conditions, Lemma 6.1 and data regularity assumptions.

Hence, collecting all the above results, we get

$$\begin{aligned} u^n \in C([0,T]; H_\lambda ^1(\Omega ,\Gamma _1))\cap C^1(0,T; L^2_\lambda (\Omega ,\Gamma _1)) \cap H^1(0,T; H^1_\lambda (\Omega ,\Gamma _1)). \end{aligned}$$

4. Existence of the solution u Resorting to subsequences \(\{u_{m_l}\}_{l=1}^{\infty }\) of \(\{u_m\}_{m=1}^{\infty }\), passing to the limit for \(m\rightarrow \infty \) and using standard arguments it is possible to prove that there exists a solution u to problem (17) with

$$\begin{aligned} u \in C([0,T]; H_\lambda ^1(\Omega ,\Gamma _1))\cap C^1(0,T; L^2_\lambda (\Omega ,\Gamma _1)) \cap H^1(0,T; H^1_\lambda (\Omega ,\Gamma _1)). \end{aligned}$$

5. Uniqueness of the weak solution Let \(u_1\) and \(u_2\) be two solutions of weak problem (17) and set \(w=u_1-u_2\). By definition, taking \(z=w\), we get from (17)

$$\begin{aligned} \frac{d}{dt}\left( ||w||_{L^2_\lambda (\Omega , \Gamma _1)}^2\right) + ||\nabla w||^2_{L^2(\Omega )} + \alpha ||w||^2_{L^2(\Gamma _1)} + \beta ||\nabla _\Gamma w||^2_{L^2(\Gamma _1)}=0, \end{aligned}$$

that implies \(w=0\), or \(u_1=u_2\) for a.e. \(0\le t \le T\).

6. Improved regularity Rewriting (17) as

$$\begin{aligned} a(u,v)=(\tilde{f},v)_{L^2(\Omega )} +(\tilde{g},v)_{L^2(\Gamma _1)}, \end{aligned}$$

where \(\tilde{f}= f - \partial _t u \in L^2(0,T,L^2(\Omega ))\) and \(\tilde{g}= g - \partial _t u \in L^2(0,T,L^2(\Gamma _1))\). Employing Theorem 3.1 we get \(u(t)\in H^2_\lambda (\Omega ,\Gamma _1)\) for a.e. \(0\le t \le T\).

7. Higher regularity We prove (18) by induction. From the above discussion the result holds true for \(m=1\). Assume now the validity of (18) for some \(m>1\), together with the associated higher order compatibility and regularity conditions. Differentiating (16) with respect to t, it is immediate to verify that \(\tilde{u}=\partial _t u\) verifies

(38)

where \(\tilde{f}=\partial _t f\), \(\tilde{g}=\partial _t g\), \(\tilde{u}_0 = f(0,\cdot ) + \Delta u_0\) in \(\Omega \) and \(\tilde{u}_0|_\Gamma = \beta \Delta _{\Gamma }u_0 - \partial _n u_0 -\alpha u_0 + g(0,\cdot ) \) on \(\Gamma \). Since the pair (fg) satisfies the higher order compatibility conditions for \(k=1,\ldots ,m\) then the pair \((\tilde{f},\tilde{g})\) satisfies the same type of compatibility conditions for \(k=1,\ldots ,m-1\). Hence, it follows for \(k=0,\ldots ,m-1\)

$$\begin{aligned}&\frac{d^k \tilde{u}}{d t^k} \in C([0,T]; H^{2m-2k}(\Omega ,\Gamma _1))\cap C^1([0,T]; H^{2m-2k-2}_\lambda (\Omega ,\Gamma _1))\nonumber \\&\quad \cap ~ H^1(0,T; H^{2m-2k-1}_\lambda (\Omega ,\Gamma _1)) \end{aligned}$$
(39)

which immediately implies the validity of (18) for \(k=0,\ldots ,m\). \(\square \)

The following result has been proof in [16, Lemmas 4.4 and 4.5].

Lemma 6.1

Let \(z \in Z = \{z\in H^2(\Omega )\ |\ \partial _n z = 0 \text { on } \Gamma _1\}\). If \(z_n\) is the \(L^2(\Omega )\)-projection of z on \(V^n\), then

$$\begin{aligned} ||z_n - z||_{H^1_\lambda (\Omega ;\Gamma _1)}\rightarrow 0 \text { when } n\rightarrow \infty . \end{aligned}$$
(40)

Let \(V_{\infty }=\cup _{n=1}^\infty V_n\). Moreover, Z and \(V_{\infty }\) are dense in \(H^1_\lambda (\Omega ;\Gamma _1)\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonietti, P.F., Grasselli, M., Stangalino, S. et al. Discontinuous Galerkin Approximation of Linear Parabolic Problems with Dynamic Boundary Conditions. J Sci Comput 66, 1260–1280 (2016). https://doi.org/10.1007/s10915-015-0063-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0063-y

Keywords

Navigation