Skip to main content
Log in

Convergence Analysis of Fractional Time-Stepping Techniques for Incompressible Fluids with Microstructure

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We present and analyze fully discrete fractional time stepping techniques for the solution of the micropolar Navier Stokes equations, which is a system of equations that describes the evolution of an incompressible fluid whose material particles possess both translational and rotational degrees of freedom. The proposed schemes uncouple the computation of the linear and angular velocity and the pressure. We develop a first order scheme which is unconditionally stable and delivers optimal convergence rates, and an almost unconditionally stable second order scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Amirat, Y., Hamdache, K.: Unique solvability of equations of motion for ferrofluids. Nonlinear Anal. 73(2), 471–494 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  2. Amirat, Y., Hamdache, K., Murat, F.: Global weak solutions to equations of motion for magnetic fluids. J. Math. Fluid Mech. 10(3), 326–351 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bangerth, W., Hartmann, R., Kanschat, G.: deal.II—a general purpose object oriented finite element library. ACM Trans. Math. Softw. 4(33), 24/1–24/27 (2007)

    MathSciNet  Google Scholar 

  4. Bangerth, W., Heister, T., Kanschat, G.: deal.II Differential Equations Analysis Library, Technical Reference. http://www.dealii.org

  5. Chorin, A.J.: Numerical solution of the Navier–Stokes equations. Math. Comp. 22, 745–762 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chorin, A.J.: On the convergence of discrete approximations to the Navier–Stokes equations. Math. Comp. 23, 341–353 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dahler, J.S., Scriven, L.E.: Angular momentum of continua. Nature 192, 36–37 (1961)

    Article  Google Scholar 

  8. Dahler, J.S., Scriven, L.E.: Theory of structured continua. I. General consideration of angular momentum and polarization. Proc. R. Soc. 275(1363), 504–527 (1963)

    Article  Google Scholar 

  9. Eringen, A.C.: Theory of micropolar fluids. J. Math. Mech. 16, 1–18 (1966)

    MathSciNet  Google Scholar 

  10. Eringen, A.C.: Microcontinuum Field Theories I. Foundations and Solids. Springer, New York (1999)

    Book  MATH  Google Scholar 

  11. Eringen, A.C.: Microcontinuum Field Theories II. Fluent Media. Springer, New York (2001)

    MATH  Google Scholar 

  12. Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements. Springer, New York (2004)

    Book  MATH  Google Scholar 

  13. Fu, L.M., Tsai, C.H., Leong, K.P., Wen, C.Y.: Rapid micromixer via ferrofluids. Phys. Procedia, 9, 270–273 (2010); 12th International Conference on Magnetic Fluids (ICMF12)

  14. Girault, V., Raviart, P.-A.: Finite Element Methods for Navier–Stokes Equations Theory and Algorithms. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  15. Guermond, J.-L.: Un résultat de convergence d’ordre deux en temps pour l’approximation des équations de Navier–Stokes par une technique de projection incrémentale. M2AN Math. Model. Numer. Anal. 33(1), 169–189 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. Guermond, J.-L., Minev, P., Shen, J.: An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Eng. 195(44–47), 6011–6045 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Guermond, J.-L., Pasquetti, R., Popov, B.: Entropy viscosity method for nonlinear conservation laws. J. Comput. Phys. 230(11), 4248–4267 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. Guermond, J.-L., Quartapelle, L.: On the approximation of the unsteady Navier–Stokes equations by finite element projection methods. Numer. Math. 80(5), 207–238 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Guermond, J.-L., Salgado, A.: A splitting method for incompressible flows with variable density based on a pressure Poisson equation. J. Comput. Phys. 228(8), 2834–2846 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Guermond, J.-L., Salgado, A.J.: Error analysis of a fractional time-stepping technique for incompressible flows with variable density. SIAM J. Numer. Anal. 49(3), 917–944 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  21. He, Y.: The Euler implicit/explicit scheme for the 2D time-dependent Navier–Stokes equations with smooth or non-smooth initial data. Math. Comp. 77(264), 2097–2124 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  22. Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier–Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 19(2), 275–311 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  23. Łukaszewicz, G.: Micropolar fluids. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston (1999). Theory and applications

  24. Marion, M., Temam, R.: Navier–Stokes equations: theory and approximation. In: Handbook of Numerical Analysis, vol. VI, Handb. Numer. Anal., VI, pp. 503–688. North-Holland, Amsterdam (1998)

  25. Nochetto, R.H., Salgado, A.J., Tomas, I.: Ferrohydrodynamics: Modeling Issues and Numerical Methods. In preparation (2014)

  26. Nochetto, R.H., Salgado, A.J., Tomas, I.: The micropolar Navier–Stokes equations: a priori error analysis. Math. Models Methods Appl. Sci. 24(7), 1237–1264 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  27. Ortega-Torres, E., Rojas-Medar, M.: Optimal error estimate of the penalty finite element method for the micropolar fluid equations. Numer. Funct. Anal. Optim. 29(5–6), 612–637 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  28. Prohl, A.: Projection and Quasi-Compressibility Methods for Solving the Incompressible Navier–Stokes Equations. Advances in Numerical Mathematics. B. G. Teubner, Stuttgart (1997)

    Book  Google Scholar 

  29. Rosensweig, R.E.: Ferrohydrodynamics. Dover, New York (1997)

    Google Scholar 

  30. Temam, R.: Une méthode d’approximation de la solution des équations de Navier–Stokes. Bull. Soc. Math. France 96, 115–152 (1968)

    MATH  MathSciNet  Google Scholar 

  31. Temam, R.: Sur l’approximation de la solution des équations de Navier–Stokes par la méthode des pas fractionnaires ii. Arch. Rat. Mech. Anal. 33, 377–385 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  32. Temam, R.: Navier–Stokes Equations. AMS Chelsea Publishing, Providence, RI (2001). Theory and numerical analysis, Reprint of the 1984 edition

  33. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, volume 25 of Springer Series in Computational Mathematics, 2nd edn. Springer, Berlin (2006)

  34. Tone, F.: Error analysis for a second order scheme for the Navier–Stokes equations. Appl. Numer. Math. 50(1), 93–119 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  35. Tsai, T.-H., Liou, D.-S., Kuo, L.-S., Chen, P.-H.: Rapid mixing between ferro-nanofluid and water in a semi-active y-type micromixer. Sens. Actuators A: Phys. 153(2), 267–273 (2009)

    Article  Google Scholar 

  36. Wheeler, M.F.: A priori \(L_{2}\) error estimates for Galerkin approximations to parabolic partial differential equations. SIAM J. Numer. Anal. 10, 723–759 (1973)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abner J. Salgado.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salgado, A.J. Convergence Analysis of Fractional Time-Stepping Techniques for Incompressible Fluids with Microstructure. J Sci Comput 64, 216–233 (2015). https://doi.org/10.1007/s10915-014-9926-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-014-9926-x

Keywords

Mathematics Subject Classification

Navigation