Skip to main content
Log in

Semi-analytical Time Differencing Methods for Stiff Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A semi-analytical method is developed based on conventional integrating factor (IF) and exponential time differencing (ETD) schemes for stiff problems. The latter means that there exists a thin layer with a large variation in their solutions. The occurrence of this stiff layer is due to the multiplication of a very small parameter \(\varepsilon \) with the transient term of the equation. Via singular perturbation analysis, an analytic approximation of the stiff layer, which is called a corrector, is sought for and embedded into the IF and ETD methods. These new schemes are then used to approximate the non-stiff part of the solution. Since the stiff part is resolved analytically by the corrector, the new method outperforms the conventional ones in terms of accuracy. In this paper, we apply our new method for both problems of ordinary differential equations and some partial differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ascher, U.M., Ruuth, S.J., Wetton, B.T.R.: Implicit-explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32(3), 797–823 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ascher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25(2–3), 151–167 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ashi, H.: Numerical methods for stiff systems, Ph.D. thesis, the University of Nottingham (2008)

  4. Aziz, et al. Z.A.: Fourth-order time stepping for stiff PDEs via integrating factor. Adv. Sci. Lett. 19(1), 170–173 (2013)

  5. Boyd, J.P.: Chebyshev and Fourier Spectral Methods. Dover, Mineola, NY (2001)

    MATH  Google Scholar 

  6. Cash, J.R.: Efficient numerical methods for the solution of stiff initial-value problems and differential algebraic equations. Proc. R. Soc. Lond. A. 459, 797–815 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods in Fluid Dynamics. Springer Series in Computational Physics. Springer, Berlin (1988)

    Book  Google Scholar 

  8. Cox, S.M., Matthews, P.C.: Exponential time differencing for stiff systems. J. Comput. Phys. 176, 430–455 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Weinan, E., Engquist, Bjorn, Li, Xiantao, Ren, Weiqing, Vanden-Eijnden, Eric: The heterogeneous multiscale method: a review. Commun. Comput. Phys. 2(3), 367–450 (2007)

    MATH  MathSciNet  Google Scholar 

  10. Engquist, B., Tsai, Y.-H.: Heterogeneous multiscale methods for stiff ordinary differential equations. Math. Comput. 74(252), 1707–1742 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fornberg, B.: A Practical Guide to Pseudospectral Methods. Cambridge University Press, Cambridge, UK (1996)

    MATH  Google Scholar 

  12. Holmes, M.H.: Introduction to Perturbation Methods. Springer, New York (1995)

    Book  MATH  Google Scholar 

  13. Han, H., Kellogg, R. B.: A method of enriched subspaces for the numerical solution of a parabolic singular perturbation problem. In: Computational and Asymptotic Methods for Boundary and Interior Layers, Boole Press Conf. Ser. 4, Dublin, pp. 46–52 (1982)

  14. Hyman, J.M., Nicolaenko, B.: The Kuramoto-Sivashinsky equation: a bridge between PDE’s and dynamical systems. Physica D 18, 113–126 (1986). North-Holland, Amsterdam

    Article  MATH  MathSciNet  Google Scholar 

  15. Hoz, F.D.L., Vadillo, F.: An exponential time differencing method for the nonlinear Schrödinger equation. Comput. Phys. Commun. 179, 449–456 (2008)

    Article  MATH  Google Scholar 

  16. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II, Stiff and Differential-Algebraic Problems. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  17. Johnson, R.S.: Singular Perturbation Theory. Springer Science+Business Media Inc, New York (2005)

    MATH  Google Scholar 

  18. Jung, C.: Finite elements scheme in enriched subspaces for singularly perturbed reaction-diffusion problems on a square domain. Asymptot. Anal. 57, 41–69 (2008)

    MATH  MathSciNet  Google Scholar 

  19. Jin, S., Levermore, C.D.: Numerical schemes for hyperbolic conservation laws with stiff relaxation terms. J. Comput. Phys. 126, 449–467 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  20. Jung, C., Nguyen, T.B.: Semi-analytical numerical methods for convection-dominated problems with turning points. Int. J. Numer. Anal. Model. 10(2), 314–332 (2013)

    MATH  MathSciNet  Google Scholar 

  21. Jung, C., Nguyen, T.B.: New time differencing methods for spectral methods (submitted)

  22. Jung, C., Temam, R.: Asymptotic analysis for singularly perturbed convection-diffusion equations with a turning point. J. Math. Phys. 48, 065301 (2007)

    Article  MathSciNet  Google Scholar 

  23. Jung, C., Temam, R.: Finite volume approximation of one-dimensional stiff convection-diffusion equations. J. Sci. Comput. 41(3), 384–410 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  24. Jin, S., Xin, Z.: The relaxation schemes for systems of conservation laws in arbitrary space dimensions. Commun. Pure Appl. Math. 48(3), 235–276 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kevorkian, J., Cole, J.D.: Multiple Scale and Singular Perturbation Methods. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  26. Kellogg, R.B., Stynes, M.: Layers and corner singularities in singularly perturbed elliptic problems. BIT 48(2), 309–314 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  27. Kevrekidis, I.G., Samaey, G.: Equation-free multiscale computation: algorithms and applications. Annu. Rev. Phys. Chem. 60, 321–344 (2009)

    Article  Google Scholar 

  28. Kassam, A.-K., Trefethen, L.N.: Fourth-order time-stepping for stiff PDEs. SIAM J. Sci. Comput. 26(4), 1214–1233.

  29. Krogstad, S.: Generalized integrating factors methods for stiff PDEs. J. Comput. Phys. 203, 72–88 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  30. Marion, M., Temam, R.: Nonlinear Galerkin methods. SIAM J. Numer. Anal. 26(5), 1139–1157 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  31. Mai-Duy, N., Pan, D., Phan-Thien, N., Khoo, B.C.: Dissipative particle dynamics modeling of low Reynolds number incompressible flows. J. Rheol. 57, 585 (2013)

    Article  Google Scholar 

  32. Nicolaenko, B., Scheurer, B., Temam, R.: Some global dynamical properties of the Kuramoto-Sivashisky equations: nonlinear stability and attractors. Physica D 16, 155–183 (1985). North-Holland, Amsterdam

    Article  MATH  MathSciNet  Google Scholar 

  33. O’Malley, R.E.: Singularly perturbed linear two-point boundary value problems. SIAM Rev. 50(3), 459–482 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  34. Shih, S., Kellogg, R.B.: Asymptotic analysis of a singular perturbation problem. SIAM J. Math. Anal. 18, 1467–1511 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  35. Stynes, M.: Steady-state convection-diffusion problems. Acta Numer. 14, 445–508 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  36. Trefethen, L.N.: Spectral methods in Matlab. Society for Industrial and Applied Mathematics, Philadelphia (2000)

    Book  MATH  Google Scholar 

  37. Tao, M., Owhadi, H., Marsden, J.E.: Nonintrusive and structure preserving multiscale integration of stiff ODEs, SDEs, and Hamiltonian systems with hidden slow dynamics via flow averaging. Multiscale Model. Simul. 8(4), 1269–1324 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  38. Wasow, W.: Linear Turning Point Theory. Spinger, New York (1985)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea(NRF) Grant funded by the Korea government(MSIP) (NRF-2012R1A1B3001167).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Yeol Jung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, CY., Nguyen, T.B. Semi-analytical Time Differencing Methods for Stiff Problems. J Sci Comput 63, 355–373 (2015). https://doi.org/10.1007/s10915-014-9897-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-014-9897-y

Keywords

Mathematics Subject Classification

Navigation