Skip to main content

Advertisement

Log in

Breast Cancer Stem Cells and the Immune System: Promotion, Evasion and Therapy

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Cancer stem cells are believed to be a subset of heterogeneous tumour cells responsible for tumour initiation, growth, local invasion, and metastasis. In breast cancer, numerous factors have been implicated in regulation of cancer stem cells, but there is still a paucity of information regarding precise molecular and cellular mechanisms guiding their pathobiology. Components of both the adaptive and the innate immune system have been shown to play a crucial role in supporting breast cancer growth and spread, and recently some immune mediators, both molecules and cells, have been reported to influence breast cancer stem cell biology. This review summarises a small, pioneering body of evidence for the potentially important function of the “immuniche” in maintaining and supporting breast cancer stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ALDH1:

Aldehyde dehydrogenase 1

BCSC:

Breast cancer stem cell

CAF:

Cancer-associated fibroblast

CCL:

C-C chemokine ligand

CCR:

C-C chemokine receptor

CSC:

Cancer stem cell

CXCL:

C-X-C chemokine ligand

CXCR:

C-X-C chemokine receptor

EMT:

Epithelial-to-mesenchymal transition

IL-6:

Interleukin-6

IL-8:

Interleukin-8

MFE:

Mammosphere-forming efficiency

MMTV:

Mouse mammary tumour virus

MSC:

Mesenchymal stem cell

PyMT:

Polyoma middle T antigen

RANK:

Receptor activator of NFκB

RANKL:

Receptor activator of NFκB ligand

TAM:

Tumour-associated macrophage

TGF-β:

Transforming growth factor β

References

  1. Clevers H. The cancer stem cell: premises, promises and challenges. Nat Med. 2011;17(3):313–9.

    Article  CAS  PubMed  Google Scholar 

  2. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3(7):730–7.

    Article  CAS  PubMed  Google Scholar 

  3. Visvader JE, Lindeman GJ. Cancer stem cells: current status and evolving complexities. Cell Stem Cell. 2012;10(6):717–28.

    Article  CAS  PubMed  Google Scholar 

  4. Malanchi I et al. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature. 2012;481(7379):85–9.

    Article  CAS  Google Scholar 

  5. Bouras T et al. Notch signaling regulates mammary stem cell function and luminal cell-fate commitment. Cell Stem Cell. 2008;3(4):429–41.

    Article  CAS  PubMed  Google Scholar 

  6. Liu S et al. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res. 2006;66(12):6063–71.

    Article  CAS  PubMed  Google Scholar 

  7. Wang, Y., et al., Transforming growth factor-beta regulates the sphere-initiating stem cell-like feature in breast cancer through miRNA-181 and ATM. Oncogene, 2010.

  8. van Amerongen R, Bowman AN, Nusse R. Developmental stage and time dictate the fate of Wnt/beta-catenin-responsive stem cells in the mammary gland. Cell Stem Cell. 2012;11(3):387–400.

    Article  PubMed  Google Scholar 

  9. Karamboulas C, Ailles L. Developmental signaling pathways in cancer stem cells of solid tumors. Biochim Biophys Acta. 2013;1830(2):2481–95.

    Article  CAS  PubMed  Google Scholar 

  10. Alison, M.R., S.M. Lim, and L.J. Nicholson, Cancer stem cells: problems for therapy? J Pathol, 2010.

  11. Al-Hajj M et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100(7):3983–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Shackleton M et al. Generation of a functional mammary gland from a single stem cell. Nature. 2006;439(7072):84–8.

    Article  CAS  PubMed  Google Scholar 

  13. Stingl J et al. Purification and unique properties of mammary epithelial stem cells. Nature. 2006;439(7079):993–7.

    CAS  PubMed  Google Scholar 

  14. Patrawala L et al. Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2- cancer cells are similarly tumorigenic. Cancer Res. 2005;65(14):6207–19.

    Article  CAS  PubMed  Google Scholar 

  15. Ginestier C et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1(5):555–67.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Dontu G et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 2003;17(10):1253–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  CAS  PubMed  Google Scholar 

  18. Aspord C et al. Breast cancer instructs dendritic cells to prime interleukin 13-secreting CD4+ T cells that facilitate tumor development. J Exp Med. 2007;204(5):1037–47.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. DeNardo DG, Coussens LM. Inflammation and breast cancer. Balancing immune response: crosstalk between adaptive and innate immune cells during breast cancer progression. Breast Cancer Res. 2007;9(4):212.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Olkhanud PB et al. Tumor-evoked regulatory B cells promote breast cancer metastasis by converting resting CD4(+) T cells to T-regulatory cells. Cancer Res. 2011;71(10):3505–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Liyanage UK et al. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol. 2002;169(5):2756–61.

    Article  CAS  PubMed  Google Scholar 

  22. Gobert M et al. Regulatory T cells recruited through CCL22/CCR4 are selectively activated in lymphoid infiltrates surrounding primary breast tumors and lead to an adverse clinical outcome. Cancer Res. 2009;69(5):2000–9.

    Article  CAS  PubMed  Google Scholar 

  23. Balkwill FR. The chemokine system and cancer. J Pathol. 2012;226(2):148–57.

    Article  CAS  PubMed  Google Scholar 

  24. Bombonati A, Sgroi DC. The molecular pathology of breast cancer progression. J Pathol. 2011;223(2):307–17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. de la Cruz-Merino L et al. New insights into the role of the immune microenvironment in breast carcinoma. Clin Dev Immunol. 2013;2013:785317.

    PubMed Central  PubMed  Google Scholar 

  26. Zlotnik A, Yoshie O. The chemokine superfamily revisited. Immunity. 2012;36(5):705–16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Qian BZ et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature. 2011;475(7355):222–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Nannuru KC et al. Role of chemokine receptor CXCR2 expression in mammary tumor growth, angiogenesis and metastasis. J Carcinog. 2011;10:40.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Zhang Y et al. A novel role of hematopoietic CCL5 in promoting triple-negative mammary tumor progression by regulating generation of myeloid-derived suppressor cells. Cell Res. 2013;23(3):394–408.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Cabioglu N et al. CCR7 and CXCR4 as novel biomarkers predicting axillary lymph node metastasis in T1 breast cancer. Clin Cancer Res. 2005;11(16):5686–93.

    Article  CAS  PubMed  Google Scholar 

  31. Russo RC et al. The CXCL8/IL-8 chemokine family and its receptors in inflammatory diseases. Expert Rev Clin Immunol. 2014;10(5):593–619.

    Article  CAS  PubMed  Google Scholar 

  32. Charafe-Jauffret E et al. Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res. 2009;69(4):1302–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Ginestier C et al. CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts. J Clin Invest. 2010;120(2):485–97.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Acharyya S et al. A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell. 2012;150(1):165–78.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Singh S et al. Small-molecule antagonists for CXCR2 and CXCR1 inhibit human melanoma growth by decreasing tumor cell proliferation, survival, and angiogenesis. Clin Cancer Res. 2009;15(7):2380–6.

    Article  CAS  PubMed  Google Scholar 

  36. Korkaya H et al. Activation of an IL6 inflammatory loop mediates trastuzumab resistance in HER2+ breast cancer by expanding the cancer stem cell population. Mol Cell. 2012;47(4):570–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Marotta LL et al. The JAK2/STAT3 signaling pathway is required for growth of CD44(+)CD24(−) stem cell-like breast cancer cells in human tumors. J Clin Invest. 2011;121(7):2723–35.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Liu S et al. Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res. 2011;71(2):614–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Chapman RW et al. CXCR2 antagonists for the treatment of pulmonary disease. Pharmacol Ther. 2009;121(1):55–68.

    Article  CAS  PubMed  Google Scholar 

  40. Kodama J et al. Association of CXCR4 and CCR7 chemokine receptor expression and lymph node metastasis in human cervical cancer. Ann Oncol. 2007;18(1):70–6.

    Article  CAS  PubMed  Google Scholar 

  41. Kochetkova M, Kumar S, McColl SR. Chemokine receptors CXCR4 and CCR7 promote metastasis by preventing anoikis in cancer cells. Cell Death Differ. 2009;16(5):664–73.

    Article  CAS  PubMed  Google Scholar 

  42. Dubrovska A et al. CXCR4 activation maintains a stem cell population in tamoxifen-resistant breast cancer cells through AhR signalling. Br J Cancer. 2012;107(1):43–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Sheridan C et al. CD44+/CD24- breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res. 2006;8(5):R59.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Huang M et al. Breast cancer stromal fibroblasts promote the generation of CD44 + CD24- cells through SDF-1/CXCR4 interaction. J Exp Clin Cancer Res. 2010;29:80.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Cronin PA, Wang JH, Redmond HP. Hypoxia increases the metastatic ability of breast cancer cells via upregulation of CXCR4. BMC Cancer. 2010;10:225.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Smith MC et al. CXCR4 regulates growth of both primary and metastatic breast cancer. Cancer Res. 2004;64(23):8604–12.

    Article  CAS  PubMed  Google Scholar 

  47. Asiedu MK et al. TGFbeta/TNF(alpha)-mediated epithelial-mesenchymal transition generates breast cancer stem cells with a claudin-low phenotype. Cancer Res. 2011;71(13):4707–19.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Luker KE et al. Scavenging of CXCL12 by CXCR7 promotes tumor growth and metastasis of CXCR4-positive breast cancer cells. Oncogene. 2012;31(45):4750–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Yoshimura T et al. Monocyte chemoattractant protein-1/CCL2 produced by stromal cells promotes lung metastasis of 4 T1 murine breast cancer cells. PLoS One. 2013;8(3):e58791.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Velasco-Velazquez M et al. CCR5 antagonist blocks metastasis of basal breast cancer cells. Cancer Res. 2012;72(15):3839–50.

    Article  CAS  PubMed  Google Scholar 

  51. Tsuyada A et al. CCL2 mediates cross-talk between cancer cells and stromal fibroblasts that regulates breast cancer stem cells. Cancer Res. 2012;72(11):2768–79.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Carr MW et al. Monocyte chemoattractant protein 1 acts as a T-lymphocyte chemoattractant. Proc Natl Acad Sci U S A. 1994;91(9):3652–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Iliopoulos D, Hirsch HA, Struhl K. An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell. 2009;139(4):693–706.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Sansone P et al. IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. J Clin Invest. 2007;117(12):3988–4002.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Iliopoulos D et al. Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion. Proc Natl Acad Sci U S A. 2011;108(4):1397–402.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Visvader JE. Cells of origin in cancer. Nature. 2011;469(7330):314–22.

    Article  CAS  PubMed  Google Scholar 

  57. Marotta, L.L., et al., The JAK2/STAT3 signaling pathway is required for growth of CD44 + CD24- stem cell-like breast cancer cells in human tumors. J Clin Invest, 2011. 121(7).

  58. Ansieau S. EMT in breast cancer stem cell generation. Cancer Lett. 2013;338(1):63–8.

    Article  CAS  PubMed  Google Scholar 

  59. Xie G et al. IL-6-induced epithelial-mesenchymal transition promotes the generation of breast cancer stem-like cells analogous to mammosphere cultures. Int J Oncol. 2012;40(4):1171–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Sullivan NJ et al. Interleukin-6 induces an epithelial-mesenchymal transition phenotype in human breast cancer cells. Oncogene. 2009;28(33):2940–7.

    Article  CAS  PubMed  Google Scholar 

  61. Anderson DM et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature. 1997;390(6656):175–9.

    Article  CAS  PubMed  Google Scholar 

  62. Page G, Miossec P. RANK and RANKL expression as markers of dendritic cell-T cell interactions in paired samples of rheumatoid synovium and lymph nodes. Arthritis Rheum. 2005;52(8):2307–12.

    Article  CAS  PubMed  Google Scholar 

  63. Palafox M et al. RANK induces epithelial-mesenchymal transition and stemness in human mammary epithelial cells and promotes tumorigenesis and metastasis. Cancer Res. 2012;72(11):2879–88.

    Article  CAS  PubMed  Google Scholar 

  64. Pellegrini P et al. Constitutive activation of RANK disrupts mammary cell fate leading to tumorigenesis. Stem Cells. 2013;31(9):1954–65.

    Article  PubMed  Google Scholar 

  65. Thomas E et al. Receptor activator of NF-kappaB ligand promotes proliferation of a putative mammary stem cell unique to the lactating epithelium. Stem Cells. 2012;30(6):1255–64.

    Article  CAS  PubMed  Google Scholar 

  66. Schramek D et al. Osteoclast differentiation factor RANKL controls development of progestin-driven mammary cancer. Nature. 2010;468(7320):98–102.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Arwert EN, Hoste E, Watt FM. Epithelial stem cells, wound healing and cancer. Nat Rev Cancer. 2012;12(3):170–80.

    Article  CAS  PubMed  Google Scholar 

  68. Spike BT et al. A mammary stem cell population identified and characterized in late embryogenesis reveals similarities to human breast cancer. Cell Stem Cell. 2012;10(2):183–97.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Asselin-Labat ML et al. Control of mammary stem cell function by steroid hormone signalling. Nature. 2010;465(7299):798–802.

    Article  CAS  PubMed  Google Scholar 

  70. Joshi PA et al. Progesterone induces adult mammary stem cell expansion. Nature. 2010;465(7299):803–7.

    Article  CAS  PubMed  Google Scholar 

  71. Chin AR, Wang SE. Cytokines driving breast cancer stemness. Mol Cell Endocrinol. 2014;382(1):598–602.

    Article  CAS  PubMed  Google Scholar 

  72. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105(4):1815–22.

    Article  CAS  PubMed  Google Scholar 

  73. Sotiropoulou PA et al. Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells. 2006;24(1):74–85.

    Article  PubMed  Google Scholar 

  74. Karnoub AE et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. 2007;449(7162):557–63.

    Article  CAS  PubMed  Google Scholar 

  75. Dwyer RM et al. Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells. Clin Cancer Res. 2007;13(17):5020–7.

    Article  CAS  PubMed  Google Scholar 

  76. Migneco G et al. Glycolytic cancer associated fibroblasts promote breast cancer tumor growth, without a measurable increase in angiogenesis: evidence for stromal-epithelial metabolic coupling. Cell Cycle. 2010;9(12):2412–22.

    Article  CAS  PubMed  Google Scholar 

  77. Liao D et al. Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4 T1 murine breast cancer model. PLoS One. 2009;4(11):e7965.

    Article  PubMed Central  PubMed  Google Scholar 

  78. Orimo A et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 2005;121(3):335–48.

    Article  CAS  PubMed  Google Scholar 

  79. Pollard JW. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer. 2004;4(1):71–8.

    Article  CAS  PubMed  Google Scholar 

  80. Chen J et al. CCL18 from tumor-associated macrophages promotes breast cancer metastasis via PITPNM3. Cancer Cell. 2011;19(4):541–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Okuda H et al. Hyaluronan synthase HAS2 promotes tumor progression in bone by stimulating the interaction of breast cancer stem-like cells with macrophages and stromal cells. Cancer Res. 2012;72(2):537–47.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Jinushi M et al. Tumor-associated macrophages regulate tumorigenicity and anticancer drug responses of cancer stem/initiating cells. Proc Natl Acad Sci U S A. 2011;108(30):12425–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Hong CC et al. Pretreatment levels of circulating Th1 and Th2 cytokines, and their ratios, are associated with ER-negative and triple negative breast cancers. Breast Cancer Res Treat. 2013;139(2):477–88.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Liu F et al. CD8(+) cytotoxic T cell and FOXP3(+) regulatory T cell infiltration in relation to breast cancer survival and molecular subtypes. Breast Cancer Res Treat. 2011;130(2):645–55.

    Article  CAS  PubMed  Google Scholar 

  85. Seo AN et al. Tumour-infiltrating CD8+ lymphocytes as an independent predictive factor for pathological complete response to primary systemic therapy in breast cancer. Br J Cancer. 2013;109(10):2705–13.

    Article  CAS  PubMed  Google Scholar 

  86. Benevides L et al. Enrichment of regulatory T cells in invasive breast tumor correlates with the upregulation of IL-17A expression and invasiveness of the tumor. Eur J Immunol. 2013;43(6):1518–28.

    Article  CAS  PubMed  Google Scholar 

  87. Santisteban M et al. Immune-induced epithelial to mesenchymal transition in vivo generates breast cancer stem cells. Cancer Res. 2009;69(7):2887–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Holzel M, Bovier A, Tuting T. Plasticity of tumour and immune cells: a source of heterogeneity and a cause for therapy resistance? Nat Rev Cancer. 2013;13(5):365–76.

    Article  PubMed  Google Scholar 

  89. Reim F et al. Immunoselection of breast and ovarian cancer cells with trastuzumab and natural killer cells: selective escape of CD44high/CD24low/HER2low breast cancer stem cells. Cancer Res. 2009;69(20):8058–66.

    Article  CAS  PubMed  Google Scholar 

  90. Knutson KL et al. Immunoediting of cancers may lead to epithelial to mesenchymal transition. J Immunol. 2006;177(3):1526–33.

    Article  CAS  PubMed  Google Scholar 

  91. Kawasaki BT et al. Co-expression of the toleragenic glycoprotein, CD200, with markers for cancer stem cells. Biochem Biophys Res Commun. 2007;364(4):778–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Wright SE. Immunotherapy of breast cancer. Expert Opin Biol Ther. 2012;12(4):479–90.

    Article  CAS  PubMed  Google Scholar 

  93. Wang LX, Plautz GE. T cells sensitized with breast tumor progenitor cell vaccine have therapeutic activity against spontaneous HER2/neu tumors. Breast Cancer Res Treat. 2012;134(1):61–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Mine T et al. Breast cancer cells expressing stem cell markers CD44+ CD24 lo are eliminated by Numb-1 peptide-activated T cells. Cancer Immunol Immunother. 2009;58(8):1185–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Ning N et al. Cancer stem cell vaccination confers significant antitumor immunity. Cancer Res. 2012;72(7):1853–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Karyampudi, L., et al., Accumulation of Memory Precursor CD8 T Cells in Regressing Tumors Following Combination Therapy with Vaccine and Anti-PD-1 Antibody. Cancer Res, 2014.

Download references

Acknowledgments

We thank Miss Michelle Turvey for critical reading of the manuscript. Work by S. T. Boyle and M. Kochetkova is supported by a grant from the National Health and Medical Research Council and the Australian Postgraduate Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Kochetkova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boyle, S.T., Kochetkova, M. Breast Cancer Stem Cells and the Immune System: Promotion, Evasion and Therapy. J Mammary Gland Biol Neoplasia 19, 203–211 (2014). https://doi.org/10.1007/s10911-014-9323-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-014-9323-y

Keywords

Navigation