Skip to main content
Log in

Analysis of the Valley-Ridge inflection points through the partitioning technique of the Hessian eigenvalue equation

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The Valley-Ridge inflection (VRI) points are related to the branching of a reaction valley or reaction channel. These points are a special class of points of the potential energy surface (PES). They are also special points of the Valley-Ridge borderline of the PES. The nature of the VRI points and their differences with respect to the other points of the Valley-Ridge borderline is analyzed using the Löwdin’s partitioning technique applied to the eigenvalue equation of the Hessian matrix. Eigenvalues and eigenvectors of the Hessian are better imaginable than the former used adjoint matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. K. Laidler, Theory Reaction Rates (McGraw-Hill, New York, 1969)

    Google Scholar 

  2. P.G. Mezey, in The Reaction Path in Chemistry: Current Approaches and Perspectives, ed. by D. Heidrich (Kluwer, Dordrecht, 1995), pp. 11–38

  3. M. Hirsch, W. Quapp, D. Heidrich, Phys. Chem. Chem. Phys. 1, 5291 (1999)

    Article  CAS  Google Scholar 

  4. W. Quapp, V. Melnikov, Phys. Chem. Chem. Phys. 3, 2735 (2001)

    Article  CAS  Google Scholar 

  5. W. Quapp, B. Schmidt, Theor. Chem. Acc. 128, 47 (2011)

    Article  CAS  Google Scholar 

  6. B. Schmidt, W. Quapp, Theor. Chem. Acc. 132, 1305 (2013)

    Article  Google Scholar 

  7. W. Quapp, D. Heidrich, J. Mol. Struct. (THEOCHEM) 585, 105 (2002)

    Article  CAS  Google Scholar 

  8. Y. Kumeda, T. Taketsugu, J. Chem. Phys. 113, 477 (2000)

    Article  CAS  Google Scholar 

  9. D.H. Ess, S.E. Wheeler, R.G. Iafe, L. Xu, N. Çelebi-Ölçüm, K.N. Houk, Angew. Chem. Int. Ed. 47, 7592 (2008)

    Article  CAS  Google Scholar 

  10. V. Bakken, D. Danovich, S. Shaik, H.B. Schlegel, J. Am. Chem. Soc. 123, 130 (2001)

    Article  CAS  Google Scholar 

  11. W. Quapp, J.M. Bofill, A. Aguilar-Mogas, Theor. Chem. Acc. 129, 803 (2011)

    Article  CAS  Google Scholar 

  12. W. Quapp, J.M. Bofill, J. Math. Chem. 50, 2061 (2012)

    Article  CAS  Google Scholar 

  13. R.A. Marcus, J. Chem. Phys. 45, 4493 (1966)

    Article  CAS  Google Scholar 

  14. R.A. Marcus, J. Chem. Phys. 49, 2610–2617 (1968)

    Article  CAS  Google Scholar 

  15. D.G. Truhlar, A.J. Kuppermann, J. Am. Chem. Soc. 93, 1840 (1971)

    Article  Google Scholar 

  16. K. Fukui, J. Phys. Chem. 74, 4161 (1974)

    Article  Google Scholar 

  17. V.S. Melissas, D.G. Truhlar, B.C. Garret, J. Chem. Phys. 96, 5758 (1992)

    Article  CAS  Google Scholar 

  18. W. Quapp, M. Hirsch, O. Imig, D. Heidrich, J. Comput. Chem. 19, 1087 (1998)

    Article  CAS  Google Scholar 

  19. J.M. Bofill, W. Quapp, J. Chem. Phys. 134, 074101 (2011)

    Article  Google Scholar 

  20. M.V. Basilevsky, Chem. Phys. 60, 337 (1981)

    Article  Google Scholar 

  21. D.K. Hoffman, R.S. Nord, K. Ruedenberg, Theor. Chim. Acta 69, 265 (1986)

    Article  CAS  Google Scholar 

  22. W. Quapp, Theor. Chim. Acta 75, 447 (1989)

    Article  CAS  Google Scholar 

  23. J.-Q. Sun, K. Ruedenberg, J. Chem. Phys. 98, 9707 (1993)

    Article  CAS  Google Scholar 

  24. K. Bondensgård, F. Jensen, J. Chem. Phys. 104, 8025 (1996)

    Article  Google Scholar 

  25. J.M. Bofill, W. Quapp, M. Caballero, J. Chem. Theory Comput. 8, 927 (2012)

    Article  CAS  Google Scholar 

  26. G.J. Atchity, S.S. Xantheas, K. Ruedenberg, J. Chem. Phys. 95, 1862 (1991)

    Article  Google Scholar 

  27. P. Valtazanos, K. Ruedenberg, Theor. Chim. Acta 69, 281 (1986)

    Article  CAS  Google Scholar 

  28. W. Quapp, M. Hirsch, D. Heidrich, Theor. Chem. Acc. 100, 285 (1998)

    Article  CAS  Google Scholar 

  29. W. Quapp, J. Mol. Struct. (THEOCHEM) 695–696, 95 (2004)

    Google Scholar 

  30. R. Crehuet, J.M. Bofill, J. Chem. Phys. 122, 234105 (2005)

    Article  Google Scholar 

  31. W. Quapp, M. Hirsch, D. Heidrich, Theor. Chem. Acc. 112, 40 (2004)

    Article  CAS  Google Scholar 

  32. M. Hirsch, W. Quapp, Chem. Phys. Lett. 395, 150 (2004)

    Article  CAS  Google Scholar 

  33. P.G. Mezey, Potential Energy Hypersurfaces (Elsevier, Amsterdam, 1987)

    Google Scholar 

  34. P.G. Mezey, Theor. Chim. Acta 54, 95 (1980)

    CAS  Google Scholar 

  35. M. Hirsch, W. Quapp, J. Math. Chem. 36, 307 (2004)

    Article  CAS  Google Scholar 

  36. P.-O. Löwdin, in Perturbation Theory and Its Application in Quantum Mechanics, ed. by C.H. Wilcox (Wiley, New York, 1966), p. 255

  37. R. Shepard, Adv. Chem. Phys. 69, 63 (1987)

    Article  CAS  Google Scholar 

  38. A. Banerjee, N. Adams, J. Simons, R. Shepard, J. Phys. Chem. 89, 52 (1985)

    Article  CAS  Google Scholar 

  39. J. Simons, P. Jörgensen, J. Taylor, J. Ozment, J. Phys. Chem. 87, 2745 (1983)

    Article  CAS  Google Scholar 

  40. E. Besalú, J.M. Bofill, Theor. Chem. Acc. 100, 265 (1998)

    Article  Google Scholar 

  41. B.N. Parlett, The Symmetry Eigenvalue Problem (Prentice Hall, New Jersey, 1980)

    Google Scholar 

  42. J. Ding, A. Zhou, Appl. Math. Lett. 20, 1223 (2007)

    Article  Google Scholar 

  43. R. Courant, D. Hilbert, in Methods of Mathematical Physics, Part 1, 2 English edn., ed. by R. Courant (Wiley, New york, 1953)

  44. M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S.J. Su, T.L. Windus, M. Dupuis, J.A. Montgomery, J. Comput. Chem. 14, 1347 (1993)

    Article  CAS  Google Scholar 

  45. D.J. Wales, J. Chem. Phys. 113, 3926 (2000)

    Article  CAS  Google Scholar 

  46. W. Quapp, J. Chem. Phys. 114, 609 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Spanish Ministerio de Economía y Competitividad, project CTQ2011-22505 and, in part from the Generalitat de Catalunya projects 2009SGR-1472 is fully acknowledged. We are indebted to a referee for a constructive comment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josep Maria Bofill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bofill, J.M., Quapp, W. Analysis of the Valley-Ridge inflection points through the partitioning technique of the Hessian eigenvalue equation. J Math Chem 51, 1099–1115 (2013). https://doi.org/10.1007/s10910-012-0134-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-012-0134-3

Keywords

Navigation