Skip to main content
Log in

Kinetic Inductance Parametric Up-Converter

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We describe a novel class of devices based on the nonlinearity of the kinetic inductance of a superconducting thin film. By placing a current-dependent inductance in a microwave resonator, small currents can be measured through their effect on the resonator’s frequency. By using a high-resistivity material for the film and nanowires as kinetic inductors, we can achieve a large coefficient of nonlinearity to improve device sensitivity. We demonstrate a current sensitivity of \(8{\text {pA/}}\sqrt{{\text {Hz}}}\), making this device useful for transition-edge sensor (TES) readout and other cutting-edge applications. An advantage of these devices is their natural ability to be multiplexed in the frequency domain, enabling large detector arrays for TES-based instruments. A traveling-wave version of the device, consisting of a thin-film microwave transmission line, is also sensitive to small currents as they change the phase length of the line due to their effect on its inductance. We demonstrate a current sensitivity of \(5{\text {pA/}}\sqrt{{\text {Hz}}}\) for this version of the device, making it also suitable for TES readout as well as other current-detection applications. It has the advantage of multi-GHz bandwidth and greater dynamic range, offering a different approach to the resonator version of the device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. W.S. Holland, D. Bintley, E.L. Chapin et al., Mon. Not. R. Astron. Soc. 430, 2513–2533 (2013). doi:10.1093/mnras/sts612

    Article  ADS  Google Scholar 

  2. M.D. Eisaman, J. Fan, A. Migdall, S.V. Polyakov, Rev. Sci. Instrum. 82, 071101 (2011). doi:10.1063/1.3610677

    Article  ADS  Google Scholar 

  3. R.L. Fagaly, Rev. Sci. Instrum. 77, 101101 (2006). doi:10.1063/1.2354545

    Article  ADS  Google Scholar 

  4. K.D. Irwin, G.C. Hilton, Top. Appl. Phys. 99, 63–150 (2005). doi:10.1007/10933596_3

  5. H.G. Leduc, B. Bumble, P.K. Day et al., Appl. Phys. Lett. 97, 102509 (2010). doi:10.1063/1.3480420

    Article  ADS  Google Scholar 

  6. B.H. Eom, P.K. Day, H.G. Leduc, J. Zmuidzinas, Nat. Phys. 8, 623–627 (2012). doi:10.1038/nphys2356

    Article  Google Scholar 

  7. O. Noroozian, J. Gao, J. Zmuidzinas, H.G. Leduc, B.A. Mazin, AIP Conf. Proc. 1185, 148–151 (2009). doi:10.1063/1.3292302

    Article  ADS  Google Scholar 

  8. H.L. Hortensius, E.F.C. Driessen, T.M. Klapwijk et al., Appl. Phys. Lett. 100, 182602 (2012). doi:10.1063/1.4711217

    Article  ADS  Google Scholar 

  9. M.B. Ketchen, J.M. Jaycox, Appl. Phys. Lett. 40, 736 (1982). doi:10.1063/1.93210

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by NASA Space Technology Research Fellowship Grant NNX12AM42H. Devices were fabricated at JPL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kher, A., Day, P.K., Eom, B.H. et al. Kinetic Inductance Parametric Up-Converter. J Low Temp Phys 184, 480–485 (2016). https://doi.org/10.1007/s10909-015-1364-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-015-1364-0

Keywords

Navigation