Skip to main content
Log in

Bimodal Momentum Distribution of the High-Density Supersolid State

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

By performing exact quantum Monte Carlo simulations, we study the momentum distribution of the supersolid state in the two-dimensional extended Bose-Hubbard model with the nearest-neighbor repulsion. For strong nearest-neighbor repulsions, the supersolid state is stable in a broad region up to large hopping amplitudes and high particle densities. In the supersolid state, the momentum distribution shows a bimodal structure with two peaks related to the superfluidity and solidity respectively. By our calculations, we show that the bimodal structure becomes clearer as the chemical potential (or the particle density) is increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, I. Bloch, Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39 (2002)

    Article  ADS  Google Scholar 

  2. J.M. Sage, S. Sainis, T. Bergeman, D. DeMille, Optical production of ultracold polar molecules. Phys. Rev. Lett. 94, 203001 (2005)

    Article  ADS  Google Scholar 

  3. K.-K. Ni, S. Ospelkaus, M.H.G. Miranda, A. Peer, B. Neyenhuis, J.J. Zirbel, S. Kotochigova, P.S. Julienne, D.S. Jin, J. Ye, A high phase-space-density gas of polar molecules. Science 322, 231 (2008)

    Article  ADS  Google Scholar 

  4. S. Ospelkaus, A. Péer, J.J. Zirbel, B. Neyenhuis, S. Kotochigova, P.S. Julienne, J. Ye, D.S. Jin, Efficient state transfer in an ultracold dense gas of heteronuclear molecules. Nat. Phys. 4, 622 (2008)

    Article  Google Scholar 

  5. D. Jaksch, C. Bruder, J.I. Cirac, C.W. Gardiner, P. Zoller, Cold bosonic atoms in optical lattices. Phys. Rev. Lett. 81, 3108 (1998)

    Article  ADS  Google Scholar 

  6. S. Wessel, M. Troyer, Supersolid hard-core bosons on the triangular lattice. Phys. Rev. Lett. 95, 127205 (2005)

    Article  ADS  Google Scholar 

  7. M. Boninsegni, N. Prokof’ev, Supersolid phase of hard-core bosons on a triangular lattice. Phys. Rev. Lett. 95, 237204 (2005)

    Article  ADS  Google Scholar 

  8. P. Sengupta, L.P. Pryadko, F. Alet, M. Troyer, G. Schmid, Supersolid versus phase separation in two-dimensional lattice bosons. Phys. Rev. Lett. 94, 207202 (2005)

    Article  ADS  Google Scholar 

  9. I. Danshita, C.A.R. Sá de Melo, Stability of superfluid and supersolid phases of dipolar bosons in optical lattices. Phys. Rev. Lett. 103, 225301 (2009)

    Article  ADS  Google Scholar 

  10. L. Pollet, J.D. Picon, H.P. Büchler, M. Troyer, Supersolid phase with cold polar molecules on a triangular lattice. Phys. Rev. Lett. 104, 125302 (2010)

    Article  ADS  Google Scholar 

  11. B. Capogrosso-Sansone, C. Trefzger, M. Lewenstein, P. Zoller, G. Pupillo, Quantum phases of cold polar molecules in 2d optical lattices. Phys. Rev. Lett. 104, 125301 (2010)

    Article  ADS  Google Scholar 

  12. M. Iskin, Route to supersolidity for the extended Bose-Hubbard model. Phys. Rev. A 83, 051606(R) (2011)

    ADS  Google Scholar 

  13. T. Ohgoe, T. Suzuki, N. Kawashima, Commensurate supersolid of three-dimensional lattice bosons. Phys. Rev. Lett. 108, 185302 (2012)

    Article  ADS  Google Scholar 

  14. T. Ohgoe, T. Suzuki, N. Kawashima, Novel mechanism of supersolid of ultracold polar molecules in optical lattices. J. Phys. Soc. Jpn. 80, 113001 (2011)

    Article  ADS  Google Scholar 

  15. T. Ohgoe, T. Suzuki, N. Kawashima, Ground-state phase diagram of the two-dimensional extended Bose-Hubbard model. Phys. Rev. B 86, 054520 (2012)

    Article  ADS  Google Scholar 

  16. N.V. Prokof’ev, B.V. Svistunov, I.S. Tupitsyn, Exact, complete, and universal continuous-time worldline Monte Carlo approach to the statistics of discrete quantum systems. Sov. Phys. JETP 87, 310 (1998)

    Article  ADS  Google Scholar 

  17. O.F. Syljuåsen, A.W. Sandvik, Quantum Monte Carlo with directed loops. Phys. Rev. E 66, 046701 (2002)

    Article  ADS  Google Scholar 

  18. Y. Kato, N. Kawashima, Quantum Monte Carlo method for the Bose-Hubbard model with harmonic confining potential. Phys. Rev. E 79, 021104 (2009)

    Article  ADS  Google Scholar 

  19. E.L. Pollock, D.M. Ceperley, Path-integral computation of superfluid densities. Phys. Rev. B 36, 8343 (1987)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Global COE Program “the Physical Science Frontier”, the Grant-in-Aid for JSPS Fellows (Grant No. 249904), the Grant-in-Aid for Scientific Research (B) (22340111), and the Computational Materials Science Initiative (CMSI), Japan. The simulations were performed on computers at the Supercomputer Center, Institute for Solid State Physics, University of Tokyo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Ohgoe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohgoe, T., Suzuki, T. & Kawashima, N. Bimodal Momentum Distribution of the High-Density Supersolid State. J Low Temp Phys 171, 309–314 (2013). https://doi.org/10.1007/s10909-012-0794-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-012-0794-1

Keywords

Navigation