Skip to main content
Log in

A recursive algorithm for multivariate risk measures and a set-valued Bellman’s principle

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

A method for calculating multi-portfolio time consistent multivariate risk measures in discrete time is presented. Market models for d assets with transaction costs or illiquidity and possible trading constraints are considered on a finite probability space. The set of capital requirements at each time and state is calculated recursively backwards in time along the event tree. We motivate why the proposed procedure can be seen as a set-valued Bellman’s principle, that might be of independent interest within the growing field of set optimization. We give conditions under which the backwards calculation of the sets reduces to solving a sequence of linear, respectively convex vector optimization problems. Numerical examples are given and include superhedging under illiquidity, the set-valued entropic risk measure, and the multi-portfolio time consistent version of the relaxed worst case risk measure and of the set-valued average value at risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ararat C., Hamel A.H., Rudloff B.: Set-valued shortfall and divergence risk measures (Submitted for publication) (2014). arXiv:1405.4905

  2. Ben Tahar, I., Lépinette, E.: Vector-valued coherent risk measure processes. Int. J. Theor. Appl. Finance 17(2), 1450011 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benson, H.: An outer approximation algorithm for generating all efficient extreme points in the outcome set of a multiple objective linear programming problem. J. Global Optim. 13(1), 1–24 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cascos I., Molchanov I.: Multivariate risk measures: a constructive approach based on selections. Math. Finance (2014). doi:10.1111/mafi.12078

  5. Ehrgott, M., Löhne, A., Shao, L.: A dual variant of Benson’s “outer approximation algorithm” for multiple objective linear programming. J. Global Optim. 52(4), 757–778 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ehrgott, M., Shao, L., Schöbel, A.: An approximation algorithm for convex multi-objective programming problems. J. Global Optim. 50(3), 397–416 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Feinstein, Z., Rudloff, B.: Time consistency of dynamic risk measures in markets with transaction costs. Quant. Finance 13(9), 1473–1489 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Feinstein, Z., Rudloff, B.: A comparison of techniques for dynamic multivariate risk measures. In: Hamel, A., Heyde, F., Löhne, A., Rudloff, B., Schrage, C. (eds.) Set Optimization and Applications in Finance, PROMS Series, pp. 3–41. Springer, Berlin (2015)

    Chapter  Google Scholar 

  9. Feinstein, Z., Rudloff, B.: Multi-portfolio time consistency for set-valued convex and coherent risk measures. Finance Stoch. 19(1), 67–107 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hamel, A.H., Heyde, F.: Duality for set-valued measures of risk. SIAM J. Financ. Math. 1(1), 66–95 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hamel, A.H., Heyde, F., Rudloff, B.: Set-valued risk measures for conical market models. Math. Financ. Econ. 5(1), 1–28 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hamel, A.H., Löhne, A., Rudloff, B.: Benson type algorithms for linear vector optimization and applications. J. Global Optim. 59(4), 811–836 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hamel, A.H., Rudloff, B.: Continuity and finite-valuedness of set-valued risk measures. In: Tammer, C., Heyde, F. (eds.) Festschrift in Celebration of Prof. Dr. Wilfried Grecksch’s 60th Birthday, pp. 46–64. Shaker, Maastricht (2008)

    Google Scholar 

  14. Hamel, A.H., Rudloff, B., Yankova, M.: Set-valued average value at risk and its computation. Math. Financ. Econ. 7(2), 229–246 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jouini, E., Meddeb, M., Touzi, N.: Vector-valued coherent risk measures. Finance Stoch. 8(4), 531–552 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kabanov, Y.M.: Hedging and liquidation under transaction costs in currency markets. Finance Stoch. 3(2), 237–248 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kabanov, Y.M., Safarian, M.: Markets with Transaction Costs: Mathematical Theory. Springer, Berlin (2009)

    MATH  Google Scholar 

  18. Korn, R., Müller, S.: The decoupling approach to binomial pricing of multi-asset options. J. Comput. Finance 12(3), 1–30 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Löhne, A.: Vector Optimization With Infimum and Supremum. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  20. Löhne, A., Rudloff, B.: An algorithm for calculating the set of superhedging portfolios in markets with transaction costs. Int. J. Theor. Appl. Finance 17(2), 1450012 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Löhne, A., Rudloff, B., Ulus, F.: Primal and dual approximation algorithms for convex vector optimization problems. J. Global Optim. 60(4), 713–736 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pennanen, T., Penner, I.: Hedging of claims with physical delivery under convex transaction costs. SIAM J. Financ. Math. 1(1), 158–178 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Roux A., Zastawniak T.: American and Bermudan options in currency markets under proportional transaction costs. Acta Appl. Math. 141, 187–225 (2016)

  24. Schachermayer, W.: The fundamental theorem of asset pricing under proportional transaction costs in finite discrete time. Math. Finance 14(1), 19–48 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Schrage, C., Löhne, A.: An algorithm to solve polyhedral convex set optimization problems. Optimization 62(1), 131–141 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zachary Feinstein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feinstein, Z., Rudloff, B. A recursive algorithm for multivariate risk measures and a set-valued Bellman’s principle. J Glob Optim 68, 47–69 (2017). https://doi.org/10.1007/s10898-016-0459-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-016-0459-8

Keywords

Mathematics Subject Classification

Navigation