Skip to main content

Advertisement

Log in

A Comparative Study on the Sensitive Detection of Hydroxyl Radical Using Thiol-capped CdTe and CdTe/ZnS Quantum Dots

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Four types of water-soluble luminescent quantum dots (QDs) whose surface was functionlaized with thioglycolic acid (TGA), 3-mercaptopropionic acid (MPA), or glutathione (GSH), were investigated for the sensitive and selective detection of hydroxyl radical (OH) in aqueous media. It was found that the type of capping agent and QD influenced the sensitivity of the probe. The order of sensitivity of the probe was: GSH-CdTe@ZnS > MPA-CdTe@ZnS > TGA-CdTe > MPA-CdTe QDs. Under the optimum conditions, a limit of detection as low as 8.5 × 10-8 M was obtained using GSH-CdTe@ZnS. The effects of foreign reactive oxygen species and the Fenton reactants and products as possible interferences on the proposed probe were negligible for CdTe@ZnS QDs. Besides, experimental results indicated that CdTe@ZnS QDs were more attractive for the selective recognition of OH than CdTe QDs. The mechanistic reaction pathway between the QDs and OH is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1

Similar content being viewed by others

References

  1. Xue Y, Luan Q, Dan Y, Yao X, Zhou K (2011) J Phys Chem C 115:4433–4438

    Article  CAS  Google Scholar 

  2. Goldstein S, Samuni A (2007) J Phys Chem A 111:1066–1072

    Article  PubMed  CAS  Google Scholar 

  3. Goldstein S, Rabani J (2007) J Am Chem Soc 129:10597–10601

    Article  PubMed  CAS  Google Scholar 

  4. Samuni A, Goldstein S, Russo A, Mitchell JB, Krishna MC, Neta P (2002) J Am Chem Soc 124:8719–8724

    Article  PubMed  CAS  Google Scholar 

  5. Matsumoto A, Comates KE, Liu L, Stamler J (2003) Science 301:657–661

    Article  PubMed  CAS  Google Scholar 

  6. Melov S, Ravenscroft J, Malik S, Gill MS, Walker DW, Clayton PE, Wallace DC, Malfroy B, Doctrow SR, Lithgow GJ (2000) Science 289:1567–1579

    Article  PubMed  CAS  Google Scholar 

  7. Maki T, Soh N, Fukaminato T, Nakajima H, Nakano K, Imato T (2009) Anal Chim Acta 639:78–82

    Article  PubMed  CAS  Google Scholar 

  8. De Zwart LL, Meerman JH, Commandeur JN, Vermeulen PE (1998) Free Radical Bio Med 26:202–226

    Article  Google Scholar 

  9. Wang Y, Xiong H, Zhang X, Wang S (2011) Sens Actuators B Chem 161:274–278

    Article  Google Scholar 

  10. Hu Y, Zhang Z, Yang C (2008) Ultrason Sonochem 15:665–672

    Article  PubMed  CAS  Google Scholar 

  11. Komagoe K, Takeuchi H, Katsu T (2008) Sens Actuators B Chem 134:516–520

    Article  Google Scholar 

  12. Nosaka Y, Koenuma K, Ushida K, Kira A (1996) Langmuir 12:736–738

    Article  CAS  Google Scholar 

  13. Cui G, Ye Z, Chen J, Wang G, Yuan J (2011) Talanta 84:971–976

    Article  PubMed  CAS  Google Scholar 

  14. Bass DA, Parce JW, Dechatelet LR, Szejda P, Seeds MC, Thomas M (1983) J Immunol 130:1910–1917

    PubMed  CAS  Google Scholar 

  15. Indo HP, Davidson M, Yen HC, Suenaga S, Tomita K, Nishii T, Higuchi M, Koga Y, Ozawa T, Majima HJ (2007) Mitochondrion 7:106–118

    Article  PubMed  CAS  Google Scholar 

  16. Tomizawa S, Imai H, Tsukada S, Simizu T, Honda F, Nakamura M, Nagano T, Urano Y, Matsuoka Y, Fukasaku N, Saito N (2005) Neurosci Res 53:304–313

    Article  PubMed  CAS  Google Scholar 

  17. Hernández-García D, Wood CD, Castro-Obregón S, Covarrubias L (2010) Free Radical Bio Med 49:130–143

    Article  Google Scholar 

  18. Han B, Yuan J, Wang E (2009) Anal Chem 81:5569–5573

    Article  PubMed  CAS  Google Scholar 

  19. Shi L, De Paoli V, Rosenzweig N, Rosenzweig Z (2006) J Am Chem Soc 128:10378–10379

    Article  PubMed  CAS  Google Scholar 

  20. Dubach JM, Harjes DI, Clark HA (2007) J Am Chem Soc 129:8418–8419

    Article  PubMed  CAS  Google Scholar 

  21. Qian F, Zhang C, Zhang Y, He W, Gao X, Hu P, Guo Z (2009) J Am Chem Soc 131:1460–1468

    Article  PubMed  CAS  Google Scholar 

  22. Medintz IL, Clapp AR, Mattoussi H, Goldman ER, Fisher B, Mauro JM (2003) Nature 2:630–638

    Article  CAS  Google Scholar 

  23. Freeman R, Liu X, Willner I (2011) Nano Lett 11:4456–4461

    Article  PubMed  CAS  Google Scholar 

  24. Ji X, Zheng J, Xu J, Rastogi VK, Cheng T, DeFrank JJ, Lablanc RM (2005) J Phys Chem B 109:3793–3799

    Article  PubMed  CAS  Google Scholar 

  25. Wu P, Li Y, Yan X (2009) Anal Chem 81:6252–6257

    Article  CAS  Google Scholar 

  26. Chen H, Lin L, Lin Z, Guo G, Lin J (2010) J Phys Chem A 114:10049–10058

    Article  PubMed  CAS  Google Scholar 

  27. Jiang H, Ju H (2007) Anal Chem 79:6690–6696

    Article  PubMed  CAS  Google Scholar 

  28. Jiang Z, Leppert V, Kelley DF (2009) J Phys Chem C 113:19161–19171

    Article  CAS  Google Scholar 

  29. Dong C, Qian H, Fang N, Ren J (2006) J Phys Chem B 110:11069–11075

    Article  PubMed  CAS  Google Scholar 

  30. Zhang H, Zhou Z, Yang B (2003) J Phys Chem B 107:8–13

    Article  CAS  Google Scholar 

  31. Jhonsi MA, Renganathan R (2010) J Colloid Interface Sci 344:596–602

    Article  PubMed  CAS  Google Scholar 

  32. Liu Y, Yu J (2010) J Colloid Interface Sci 351:1–9

    Article  PubMed  CAS  Google Scholar 

  33. Xu G, Chance MR (2007) Chem Rev 107:3514–3543

    Article  PubMed  CAS  Google Scholar 

  34. Fery-Forgues S, Lavabre D (1999) J Chem Ed 76:1260–1264

    Article  CAS  Google Scholar 

  35. Zhang H, Zhou Z, Yang B, Gao M (2003) J Phys Chem B 107:8–13

    Article  CAS  Google Scholar 

  36. Sapra S, Sarma DD (2005) Pramana 65:565–570

    Article  CAS  Google Scholar 

  37. Sutton HC, Winterbourn CC (1989) Free Radical Bio Med 6:53–60

    Article  CAS  Google Scholar 

  38. Green M (2010) J Mater Chem 20:5797–5809

    Article  CAS  Google Scholar 

  39. Tortiglione C, Quarta A, Tino A, Manna L, Cingolani R, Pellegrino T (2007) Bioconjugate Chem 18:829–835

    Article  CAS  Google Scholar 

  40. Priyam A, Bhattacharya SC, Saha A (2009) Phys Chem Chem Phys 11:520–527

    Article  PubMed  CAS  Google Scholar 

  41. Gill R, Bahshi L, Freeman R, Willner I (2008) Angew Chem Int Ed 47:1676–1679

    Article  CAS  Google Scholar 

  42. Gadenne B, Yildiz I, Amelia M, Ciesa F, Secchi A, Arduini A, Credi A, Raymo FM (2008) J Mater Chem 18:2022–2027

    Article  CAS  Google Scholar 

  43. Wang X, Qu L, Zhang J, Peng X, Xiao M (2003) Nano Lett 3:1103–1106

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Science and Technology (DST) and National Research Foundation (NRF), South Africa through DST/NRF South African Research Chairs Initiative for Professor of Medicinal Chemistry and Nanotechnology as well as Rhodes University and DST/Mintek Nanotechnology Innovation Centre (NIC) – Sensors, South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tebello Nyokong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adegoke, O., Nyokong, T. A Comparative Study on the Sensitive Detection of Hydroxyl Radical Using Thiol-capped CdTe and CdTe/ZnS Quantum Dots. J Fluoresc 22, 1513–1519 (2012). https://doi.org/10.1007/s10895-012-1089-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-012-1089-2

Keywords

Navigation