Skip to main content
Log in

Modulation of Intramolecular Charge Transfer Emission Inside Micelles: A Fluorescence Probe for Studying Microenvironment of Micellar Assemblies

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Modulation of intramolecular charge transfer reaction of ethyl ester of N,N-Dimethylaminonaphthyl-(acrylic)-acid (EDMANA) in anionic sodium dodecyl sulfate (SDS), cationic cetyltrimethylammonium bromide (CTAB) and non-ionic p-tert-octylphenoxy polyoxyethanol (Triton-X 100, TX-100) micelles has been addressed using steady state and time resolved spectroscopy. The interaction of the CT probe EDMANA with micelles and its location inside the micelles have been investigated by the study of fluorescence spectral band position of EDMANA in micelle, the effective polarity of micelle-water interface and cetyl pyridinium chloride induced fluorescence quenching measurement. The effects of urea on the properties of the micelles such as Critical Micelle Concentration and the interaction between EDMANA and micelles have been explored using EDMANA as emission probe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lippert E, Luder W, Boos H (1962) Advances in molecular spectroscopy. Pergamon Press, Oxford, p 443

    Google Scholar 

  2. Rotkiewicz K, Grellman KH, Grabowski ZR (1973) Reinterpretation of the anomalous fluorescence of p-n, n-dimethylamino-benzonitrile. Chem Phys Lett 19:315–318

    Article  CAS  Google Scholar 

  3. Kosower EM, Dodiuk H (1976) Multiple fluorescences. II. A new scheme for 4-(N, N-Dimethylamino)benzonitrile including proton transfer. J Am Chem Soc 98:924–929

    Article  CAS  Google Scholar 

  4. Majumder D, Sen R, Bhattacharyya K, Bhattacharyya SP (1991) Twisted intramolecular charge transfer of p-(N, N-dimethylamino)benzonitrile: an approximate quantum mechanical study including solvation effects. J Phys Chem 95:4324–4329

    Article  Google Scholar 

  5. Schenter GK, Duke CB (1991) Theory of photoinduced twisting dynamics in polar solvents: application to dimethylaminobenzonitrile in propanol at low temperatures. Chem Phys Lett 176:563–570

    Article  CAS  Google Scholar 

  6. Marguet S, Mialocq JC, Millie P (1989) Intramolecular charge transfer and trans-cis isomerization of the DCM styrene dye in polar solvents. A CS INDO MRCI study. Chem Phys 160:265–279

    Article  Google Scholar 

  7. LaFemina JP, Duke CB, Patton A (1987) Electronic structure and twisted intramolecular charge transfer in dimethylanilines. J Chem Phys 87:2151–2157

    Article  CAS  Google Scholar 

  8. Hayashi S, Ando K, Kato S (1995) Reaction dynamics of charge-transfer state formation of 4-(N, N-Dimethylamino)benzonitrile in a methanol solution: theoretical analyses. J Phys Chem 99:955–964

    Article  CAS  Google Scholar 

  9. Gorse A, Pesquer M (1995) Intramolecular charge transfer excited state relaxation processes in para-substituted N, N-dimethylaniline: a theoretical study including solvent effects. J Phys Chem 99:4039–4049

    Article  CAS  Google Scholar 

  10. Grabowski ZR, Rotkiewicz K, Siemiarczuk A, Cowley DJ, Baumann W (1979) Twisted intramolecular charge transfer states (TICT). A new class of excited states with a full charge separation. Nouv J Chim 3:443–454

    CAS  Google Scholar 

  11. Rettig W (1986) Charge separation in excited states of decoupled systems—TICT compounds and implications regarding the development of new laser dyes and the primary process of vision and photosynthesis. Angew Chem Int Ed Engl 25:971–988

    Article  Google Scholar 

  12. Van der Auweraer M, Grabowski ZR, Rettig W (1991) Molecular structure and the temperature-dependent radiative rates in Twisted Intramolecular Charge-Transfer and exciplex systems. J Phys Chem 95:2083–2092

    Article  Google Scholar 

  13. Zachariasse KA, Grobys M, Tauer E (1997) Absence of dual fluorescence with 4-(dimethylamino) phenylacetylene. A comparison between experimental results and theoretical predictions. Chem Phys Lett 274:372–382

    Article  CAS  Google Scholar 

  14. Sobolewski AL, Domcke W (1996) Promotion of intramolecular charge transfer in Dimethylamino derivatives: twisting versus acceptor-group rehybridization. Chem Phys Lett 259:119–127

    Article  CAS  Google Scholar 

  15. Sun YP, Fox MA, Johnson KP (1992) Spectroscopic studies of p-(N, N-Dimethylamino)benzonitrile and ethyl p-(N, N-Dimethylamino)benzoate in supercritical trifluoromethane, carbon dioxide, and ethane. J Am Chem Soc 114:1187–1194

    Article  CAS  Google Scholar 

  16. Schulte RD, Kauffman JF (1995) Fluorescence from the Twisted Intramolecular Charge Transfer Compound Bis(4,4′-Dimethylaminophenyl)sulfone in Ethanol/CO2: A Probe of Local Solvent Composition. Appl Spectrosc 49:31–39

    Article  CAS  Google Scholar 

  17. Cox GS, Huaptman PJ, Turro NJ (1984) Dialkylaminobenzonitriles as fluorescence polarity probes for aqueous solutions of cyclodextrins. Photochem Photobiol 39:597–601

    Article  CAS  Google Scholar 

  18. Kim YH, Cho DW, Yoon M, Kim D (1996) Observation of hydrogen-bonding effects on twisted intramolecular charge transfer of p-(N, N-diethylamino)benzoic acid in aqueous cyclodextrin solutions. J Phys Chem 100:15670–15676

    Article  CAS  Google Scholar 

  19. Al-Hassan KA (1994) The role of [alpha]-cyclodextrin cavity size on the fluorescence of 4-diethylaminobenzonitrile aqueous solution. Chem Phys Lett 227:527–532

    Article  CAS  Google Scholar 

  20. Panja S, Chowdhury P, Chakravorty S (2003) Exploring the location and orientation of 4-(N, N-Dimethylamino) cinnamaldehyde in anionic, cationic and non-ionic micelles. Chem Phys Lett 368:654–662

    Article  CAS  Google Scholar 

  21. Singh TS, Mitra S (2007) Fluorescence behavior of intramolecular charge transfer probe in anionic, cationic, and nonionic micelles. J Colloid Interface Sci 311:128–134

    Article  PubMed  CAS  Google Scholar 

  22. Ziang YB, Wang XJ, Jin MG, Lin LR (1999) The effect of micelle–water interface electric field on the intramolecular charge transfer within ionic micelle: dual fluorescence of sodium p-dialkylaminobenzoates in cetyltrimethylammonium micelles. J Photochem Photobiol A: Chem 126:125–133

    Article  Google Scholar 

  23. Mallick A, Halder B, Maity S, Chattopadhyay N (2004) Constrained photophysics of 3-acetyl-4-oxo-6,7-dihydro-12H indolo-[2,3-a] quinolizine in micellar environments: a spectrofluorometric study. J Colloid Interface Sci 278:215–223

    Article  PubMed  CAS  Google Scholar 

  24. Sakthivel T, Florence AT (2003) Dendrimers & dendrons: facets of pharmaceutical nanotechnology. Drug Deliv Technol 3:73–78

    Google Scholar 

  25. Anwer K, Meaney C, Kao G, Hussain N, Shelvin R, Earls RM, Leonard P, Quezada A, Roland AP, Sullivan SM (2000) Cationic lipid-based delivery system for systemic cancer gene therapy. Cancer Gene Therapy 7:1156–1164

    Article  PubMed  CAS  Google Scholar 

  26. Rammurthy V (ed) (1991) Photochemistry in organized and constrained media. VCH, New York

    Google Scholar 

  27. Kalyanasundram K (1987) Photochemistry in microheterogeneous systems. Academic, New York

    Google Scholar 

  28. Mittal KL, Lindman B (eds) (1994) Surfactants in solution, vols. 1–3. Plenum, New York

    Google Scholar 

  29. Turro NJ, Grätzel M, Braun AM (1980) Photophysical and photochemical processes in micellar systems. Angew Chem Int Ed Engl 19:675–696

    Article  Google Scholar 

  30. Menger FM (1979) The structure of micelles. Acc Chem Res 12:111–117

    Article  CAS  Google Scholar 

  31. Singh RB, Mahanta S, Kar S, Guchhait N (2007) Spectroscopic study of excited state intramolecular charge transfer in ethyl ester of N, N′-Dimethylaminonaphthyl-(acrylic)-acid. Chem Phys 342:33–42

    Article  CAS  Google Scholar 

  32. Dasgupta PK, Moulik SP (1989) Effects of urea and a nonionic surfactant on the micellization and counterion binding properties of cetyltrimethyl ammonium bromide and sodium dodecyl sulfate. Colloid Polymer Sci 267:246–254

    Article  CAS  Google Scholar 

  33. Ruiz CC, Sánchez FG (1994) Effect of urea on aggregation behavior of triton X-100 micellar solutions: a photophysical study. J Colloid Interface Sci 165:110–115

    Article  Google Scholar 

  34. Briganti P, Puvvada S, Blankschtein D (1991) Effect of urea on micellar properties of aqueous solutions of nonionic surfactants. J Phys Chem 95:8989–8995

    Article  CAS  Google Scholar 

  35. Baglioni P, Dei L, Ferroni E, Kevan L (1991) Electron spin echo modulation and electron spin resonance studies of sodium dodecylsulfate and dodecyltrimethylammonium bromide micellar solutions: effect of urea addition. Progr Colloid Polym Sci 84:55–60

    Article  CAS  Google Scholar 

  36. Mandal P, Kundu S, Misra T, Roy SK, Ganguly T (2007) Effects of liquid crystal environment on the spectroscopic and photophysical properties of well-known reacting systems 2,3-dimethylindole (DMI) and 9-cyanoanthracene (9CNA). J Phys Chem A 111:11480–11486

    Article  PubMed  CAS  Google Scholar 

  37. Velapoldi RA, Tønnesen HH (2004) Corrected emission spectra and quantum yields for a series of fluorescent compounds in the visible spectral region. J Fluores 14:465–471

    Article  CAS  Google Scholar 

  38. Behera GB, Mishra BK, Behera PK, Panda M (1999) Fluorescent probes for structural and distance effect studies in micelles, reversed micelles and microemulsions. Adv Colloid Interface Sci 82:1–42

    Article  CAS  Google Scholar 

  39. Almgren M, Griesser F, Thomas JK (1979) Dynamic and static aspects of solubilization of neutral arenes in ionic micellar solutions. J Am Chem Soc 101:279–291

    Article  CAS  Google Scholar 

  40. Saroja G, Ramachandan B, Saha S, Samanta A (1999) The fluorescence response of a structurally modified 4-aminophthalimide derivative covalently attached to a fatty acid in homogeneous and micellar environments. J Phys Chem B 103:2906–2911

    Article  CAS  Google Scholar 

  41. Reichardt G (1994) Solvatochromic dyes as solvent polarity indicators. Chem Rev 94:2319–2358

    Article  CAS  Google Scholar 

  42. Finer EG, Franks F, Tait MJ (1972) Nuclear magnetic resonance studies of aqueous urea solutions. J Am Chem Soc 94:4424–4429

    Article  CAS  Google Scholar 

  43. Roseman M, Jencks WP (1975) Interactions of urea and other polar compounds in water. J Am Chem Soc 97:631–640

    Article  CAS  Google Scholar 

  44. Kuharski RA, Rossky PJ (1984) Molecular dynamics study of solvation in urea water solution. J Am Chem Soc 106:5786–5793

    Article  CAS  Google Scholar 

  45. Mizutani Y, Kamogawa K, Nakanishi K (1989) Effect of urea on hydrophobic interaction: raman difference spectroscopy on the carbon-hydrogen stretching vibration of acetone and the carbon-nitrogen stretching vibration of urea. J Phys Chem 93:5650–5654

    Article  CAS  Google Scholar 

Download references

Acknowledgement

AS and BKP thanks CSIR, New Delhi, for Senior Research Fellowship. We appreciate the cooperation received from Prof. T. Ganguly of IACS, Kolkata for his kind help in lifetime measurements. This work is supported by grants from DST, India (Project no. SR/S1/PC/26/2008) and CSIR, India (Project no. 01(2161)07/EMR-II).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhil Guchhait.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samanta, A., Paul, B.K. & Guchhait, N. Modulation of Intramolecular Charge Transfer Emission Inside Micelles: A Fluorescence Probe for Studying Microenvironment of Micellar Assemblies. J Fluoresc 22, 289–301 (2012). https://doi.org/10.1007/s10895-011-0959-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-011-0959-3

Keywords

Navigation