Skip to main content
Log in

Gasification of Belarusian oil shales in a filtration-combustion wave

  • HEAT AND MASS TRANSFER IN DISPERSION AND POROUS MEDIA
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

The regimes of gasification of Belarusian oil shales have been analyzed based on a generalized volume-averaged filtration-combustion model. The existence of three basic regimes — those of cocurrent and countercurrent filtration waves and of low-temperature volume pyrolysis — has been established. Data on the conditions of their existence have been obtained. The heat content of a producer gas in shale gasification in a stationary cocurrent filtration-combustion wave with air and oxygen-enriched blast has been evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Shuravin, Resources of oil shales in Belarus, in: Proc. Int. Sci. Conf. "Oil Shales — an Alternative Source of a Fuel and Raw Materials. Fundamental Investigations. Experience and Prospects" [in Russian], Saratov (2007), pp. 30–31.

  2. I. I. Lishtvan (Ed.), Problems of Complex Use of Oil Shales of the Byelorussian SSR [in Russian], Nauka i Tekhnika, Minsk (1983).

    Google Scholar 

  3. A. F. Gavrilov, Power engineering on the basis of the new technologies of using low-grade fuels, ÉSCO (Electronic J.), No. 10 (2007). (http://www.esco-ecosys.narod.ru/).

  4. A. I. Blokhin, G. P. Stel’makh, and K. A. Iorudas, Oil shales for the power engineering and chemistry of Russia, in: New in the Russian Electrical Power Engineering (Electronic J.), No. 3 (2001). (http:www.raoees/ru/ru/news/news/magazin/).

  5. K. V. Dobrego and S. A. Zhdanok, Physics of Filtration Combustion of Gases [in Russian], ITMO NAN Belarusi, Minsk (2002).

    Google Scholar 

  6. B. V. Kantorovich, Introduction to the Theory of Combustion and Gasification of a Solid Fuel [in Russian], Metallurgizdat, Moscow (1960).

    Google Scholar 

  7. L. L. Nesterenko, Yu. V. Biryukov, and V. A. Lebedev, Fundamentals of the Chemistry and Physics of Combustible Fossils [in Russian], Vishcha Shkola, Kiev (1987).

    Google Scholar 

  8. G. N. Makarov and G. D. Kharlampovich (Eds.), Chemical Technology of Solid Combustible Fossils [in Russian], Khimiya, Moscow (1986).

    Google Scholar 

  9. K. V. Dobrego and I. A. Koznacheev, Regimes of gasification of lean coal layers, Inzh.-Fiz. Zh., 79, No. 2, 56–61 (2006).

    Google Scholar 

  10. S. I. Futko, K. V. Dobrego, E. S. Shmelev, A. V. Suvorov, and S. A. Zhdanok, Thermal recovery of sorbents by filtration combustion, Combust. Sci. Technol., 5, 883–903 (2007).

    Article  Google Scholar 

  11. K. V. Dobrego and I. A. Koznacheev, Generalized volume-averaged filtration-combustion model and its application for calculating carbon gasifiers, Inzh.-Fiz. Zh., 78, No. 4, 8–14 (2005)

    Google Scholar 

  12. R. J. Kee, F. M. Rupley, and J. A. Miller, The Chemkin Thermodynamic Data Base, Sandia National Laboratories, Report SAND87-8215B (1990).

  13. A. S. Predvoditelev, L. Ya. Khitrin, O. A. Tsukhanova, et al., Combustion of Carbon [in Russian], Izd. AN SSSR, Moscow (1949).

    Google Scholar 

  14. V. Ya. Basevich, A. A. Belyaev, and S. M. Frolov, Global kinetic mechanisms for calculating turbulent reacting flows. Pt. 1, Basic Chemical Process of Heat Release, Khim. Fiz., 17, No. 9, 112–128 (1998).

    Google Scholar 

  15. K. V. Dobrego, I. M. Kozlov, N. N. Gnezdilov, and V. V. Vasiliev, 2DBurner — Software Package for Gas Filtration Combustion Systems Simulation and Gas Non-steady Flames Simulation, Preprint No. 1 of the Heat and Mass Transfer Institute, Minsk (2004).

  16. K. V. Dobrego, I. M. Kozlov, and N. N. Gnezdilov, Model and methods of 2D simulation of filtration combustion reactors with arbitrary chemical kinetics, in: Proc. 9th Int. Conf. on Numerical Combustion, April 7–10, Sorrento, Italy (2002), pp. 317–319.

  17. R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles, McGraw-Hill Inc., New York (1981).

    Google Scholar 

  18. A. Harten, High-resolution schemes for hyperbolic conservation laws, J. Comput. Phys., 49, 357–393 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  19. K. V. Dobrego, N. N. Gnezdilov, I. M. Kozlov, and E. S. Shmelev, Numerical study and optimization of the porous media VOC oxidizer with electric heating elements, Int. J. Heat Mass Transfer, 49, 5062–5069 (2006).

    Article  MATH  Google Scholar 

  20. K. V. Dobrego, I. M. Kozlov, V. I. Bubnovich, and C. E. Rosas, Dynamics of filtration combustion front perturbation in the tubular porous media burner, Int. J. Heat Mass Transfer, 46, 3279–3289 (2003).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 82, No. 2, pp. 205–214, March–April, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dobrego, K.V., Zhdanok, S.A. & Koznacheev, I.A. Gasification of Belarusian oil shales in a filtration-combustion wave. J Eng Phys Thermophy 82, 199–208 (2009). https://doi.org/10.1007/s10891-009-0204-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-009-0204-y

Keywords

Navigation