Skip to main content

Advertisement

Log in

Herbivore Defence Compounds Occur in Pollen and Reduce Bumblebee Colony Fitness

  • Rapid Communication
  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Herbivory defence chemicals in plants can affect higher trophic levels such as predators and parasitoids, but the impact on pollinators has been overlooked. We show that defensive plant chemicals can damage pollinator fitness when expressed in pollen. Crop lupins (Lupinus species from Europe and South America) accumulate toxic quinolizidine alkaloids in vegetative tissues, conferring resistance to herbivorous pests such as aphids. We identified the alkaloid lupanine and its derivatives in lupin pollen, and then provided this compound at ecologically-relevant concentrations to queenless microcolonies of bumblebees (Bombus terrestris) in their pollen to determine how foraging on these crops may impact bee colony health and fitness. Fewer males were produced by microcolonies provided with lupanine-treated pollen and they were significantly smaller than controls. This impact on males was not linked to preference as workers willingly fed lupanine-treated pollen to larvae, even though it was deleterious to colony health. Agricultural systems comprising large monocultures of crops bred for herbivore resistance can expose generalist pollinators to deleterious levels of plant compounds, and the broader environmental impacts of crop resistance must thus be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adler LS (2000) The ecological significance of toxic nectar. Oikos 91(3):409–420

    Article  Google Scholar 

  • Amin MR, Bussière LF, Goulson D (2013) Effects of male age and size on mating success in the bumblebee Bombus terrestris. J Insect Behav 25(4):362–374

    Article  Google Scholar 

  • Bennett RN, Wallsgrove RM (1994) Secondary metabolites in plant defence mechanisms. New Phyt 127(4):617–633

    Article  CAS  Google Scholar 

  • Bilgen M, Özyiğit Y (2001) Antalya ili Tekirova-phaselis beldesindeki Arı bitkilerinin belirlenmesi üzerine bir araştırma. 5th Turkish Field Plant Congress, Turkey, 565–567

  • Bryden J, Gill RJ, Mitton RAA, Raine NE, Jansen VAA (2013) Chronic sublethal stress causes bee colony failure. Ecol Lett 16(12):1463–1469

    Article  Google Scholar 

  • Cloyd RA, Bethke JA (2011) Impact of neonicotinoid insecticides on natural enemies in greenhouse and interiorscape environments. Pest Manag Sci 67(1):3–9

    Article  CAS  PubMed  Google Scholar 

  • Detzel A, Wink M (1993) Attraction, deterrence or intoxication of bees (Apis mellifera) by plant allelochemicals. Chemoecology 4(1):8–18

    Article  CAS  Google Scholar 

  • Emrich BH (1991) Acquired toxicity of the lupin aphid, Macrosiphum albifrons, and its influence on the aphidophagous predators Cocinella septempunctata, Episyrphus balteatus and Chrysoperla carnea. Z Pflanzenk Pflanzen 98(4):398–404

    CAS  Google Scholar 

  • Hatzold T, Elmadfa I, Gross R, Wink M, Hartmann T, Witte L (1983) Quinolizidine alkaloids in seeds of Lupinus mutabilis. J Agr Food Chem 31(5):934–938

    Article  CAS  Google Scholar 

  • Ings TC, Schikora J, Chittka L (2005) Bumblebees, humble pollinators or assiduous invaders? A population comparison of foraging performance in Bombus terrestris. Oecologia 144(3):508–516

    Article  PubMed  Google Scholar 

  • Johnson ND, bentley BL (1988) Effects of dietary protein and lupine alkaloids on growth and survivorship of Spodoptera eridania. J Chem Ecol 14(5):1391–1403

    Article  CAS  PubMed  Google Scholar 

  • Kordan B, Dancewicz K, Wróblewska A, Gabryś B (2012) Intraspecific variation in alkaloid profile of four lupine species with implications for the pea aphid probing behaviour. Phytochem Lett 5(1):71–77

    Article  CAS  Google Scholar 

  • Manson JS, Thomson JD (2009) Post-ingestive effects of nectar alkaloids depend on dominance status of bumblebees. Ecol Entomol 34(4):421–426

    Article  Google Scholar 

  • Nuttman C, Willmer P (2003) How does insect visitation trigger floral colour change? Ecol Entomol 28(4):467–474

    Article  Google Scholar 

  • Rasheed S, Harder L (1997) Economic motivation for plant species preferences of pollen-collecting bumble bees. Ecol Entomol 22(2):209–219

    Article  Google Scholar 

  • Stout JC, Kells AR, Goulson D (2002) Pollination of the invasive exotic shrub Lupinus arboreus (Fabaceae) by introduced bees in Tasmania. Biol Conserv 106:425–434

    Article  Google Scholar 

  • Tasei J-N, Lerin J, Ripault G (2000) Sub-lethal effects of imidacloprid on bumblebees, Bombus terrestris (Hymenoptera: Apidae), during a laboratory feeding test. Pest Manag Sci 56(9):784–788

    Article  CAS  Google Scholar 

  • Tiedeken EJ, Stout JC, Stevenson PC, Wright GA (2014) Bumblebees are not deterred by ecologically relevant concentrations of nectar toxins. J Exp Biol 217:1620–1625. doi:10.1242/​jeb.097543

  • Williams IH (1987) The pollination of lupins. International Bee Research Association. p 10–16

  • Williams IH, Martin AP, Ferguson AW, Clark SJ (1990) Effect of pollination on flower, pod and seed production in white lupin (Lupinus albus). J Agr Sci 115:67–73

    Article  Google Scholar 

  • Wright GA, Baker DD, Palmer MJ, Stabler D, Mustard JA, Power EF, Borland AM, Stevenson PC (2013) Caffeine in floral nectar enhances a pollinator’s memory of reward. Science 339(6124):1202–1204

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funded by a University of Greenwich HEFCE (RAE) project and a grant jointly from BBSRC, DEFRA, NERC, the Scottish Government and the Wellcome Trust, under the Insect Pollinators Initiative BB/I000968/1. We thank Dr Claire Nicklin, Dudley Farman and Dr Geoff Kite for assistance, and Dr André Kessler and two anonymous referees for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah E. J. Arnold.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arnold, S.E.J., Idrovo, M.E.P., Arias, L.J.L. et al. Herbivore Defence Compounds Occur in Pollen and Reduce Bumblebee Colony Fitness. J Chem Ecol 40, 878–881 (2014). https://doi.org/10.1007/s10886-014-0467-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-014-0467-4

Keywords

Navigation