Skip to main content
Log in

Inverse Approach in Ordinary Differential Equations: Applications to Lagrangian and Hamiltonian Mechanics

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

This paper is on the so called inverse problem of ordinary differential equations, i.e. the problem of determining the differential system satisfying a set of given properties. More precisely we characterize under very general assumptions the ordinary differential equations in \(\mathbb {R}^N\) which have a given set of either \(M\) partial integrals, or \(M<N\) first integral, or \(M<N\) partial and first integrals. Moreover, for such systems we determine the necessary and sufficient conditions for the existence of \(N-1\) independent first integrals. We give two relevant applications of the solutions of these inverse problem to constrained Lagrangian and Hamiltonian systems respectively. Additionally we provide the general solution of the inverse problem in dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, V.I.: Dynamical Systems III. Springer, Berlin (1996)

    Google Scholar 

  2. Arnold, V.I., Kozlov, V.V., Neishtadt, A.I.: Mathematical aspects of classical mechanics. In: Dynamical Systems III. Springer, Berlin (1998)

  3. Azcárraga, J.A., Izquierdo, J.M.: \(n\)-ary algebras: a review with applications. J. Phys. A: Math. Theor. 43, 293001 (2010)

    Article  Google Scholar 

  4. Bertrand, M.I.: Sur la possibilité de déduire d’une seule de lois de Kepler le principe de l’attraction. Comptes Rendues 9, 671–674 (1877)

  5. Charlier, C.L.: Celestial Mechanics (Die Mechanik Des Himmels) Nauka (1966) (in Russian)

  6. Dainelli, U.: Sul movimento per una linea qualunque. Giorn. Mat. 18, 271 (1880)

  7. Dirac, P.A.M.: Lectures on Quantum Mechanics. Belfer Graduate School of Sciencie, NY (1964)

  8. Ermakov, V.P.: Determination of the potential function from given partial integrals, Math. Sbornik 15, serie 4 (1881), (in Russian)

  9. Erugin, N.P.: Construction of the whole set of differential equations having a given integral curve. Akad. Nauk SSSR. Prikl. Mat. Meh. 16:659–670 (in Russian) (1952)

  10. Filippov, V.T.: On the n-Lie algebras of Jacobians. Sibirsk. Mat. Zh. 3, 660–669 (1998)

    Google Scholar 

  11. Galiullin, A.S.: Inverse Problems of Dynamics. Mir Publishers (1984)

  12. Gantmacher, F.R.: Lektsi po analitisheskoi mechanic, Ed. Nauka, Moscow, 1966 (in Russian)

  13. Godbillon, C.: Geometrie Differentielle et Mecanique Analytique. Collection Méthodes Hermann, París (1969)

  14. Joukovski, N.E.: Postroenye potencialnaia funksia po zadannie cemiestvo trayectories, Sobranye sochinyeni, T.1, Ed.Gostexizdat, 1948 (in Russian).

  15. Kozlov, V.V.: Dynamical Systems X. General Theory of Vortices. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  16. Ibañez, R., de León, M., Marreros, J., Padrón, E.: Leibniz algebroid associated with a Nambu–Poisson structure. J. Phys. A: Math. Gen. 32, 8129–8144 (1999)

    Article  MATH  Google Scholar 

  17. de Leon, M., de Diego, D.M.: On the geometry of generalized Chaplygin systems. Math. Proc. Camb. Philos. Soc. 132, 1389–1412 (2002)

    Google Scholar 

  18. Moser, J.: Various aspects of integrable Hamiltonian systems. In: Helagason, S., Coates, J. (eds.) Dynamical Systems, C.I.M.E. Lectures, Bressanone 1978, Birkhäauser, Boston, 2 edition, 1983, pp. 233–290

  19. Nambu, Y.: Generalized Hamiltonian dynamics. Phys. Rev. D 7, 2405–2412 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  20. Neimark, Ju.I., Fufaev, N.A.: Dynamics of Nonholonomic Systems. American Mathematical Society, Rhode Island (1972)

  21. Nekhoroshev, N.N.: Variables “action-angle” and their generalizations. Tr. Mosk. Mat. Obshch. 26, 181–198 (1972). (in Russian)

    MATH  Google Scholar 

  22. Newton, I.: Philosophie Naturalis Principia Mathematica, London (1687)

  23. Llibre, J., Ramírez, R., Sadovskaia, N.: Integrability of the constrained rigid body. Nonlinear Dyn. 73, 2273–2290 (2013)

    Article  MATH  Google Scholar 

  24. Llibre, J., Ramírez, R., Sadovskaia, N.: A new approach in vakonomic mechanics, to appear in Nonlinear Dynamics

  25. Ramírez, R., Sadovskaia, N.: Inverse problem in Celestial Mechanics. Atti. Sem. Mat. Fis. Univ. Modena e Reggio Emilia LII 47, 47–68 (2004)

    Google Scholar 

  26. Ramírez, R., Sadovskaia, N.: Inverse approach into the study of ordinary differential equations, preprint Universitat Rovira i Virgili (2008), pp. 1–49

  27. Ramirez, R., Sadovskaia, N.: Differential equations having a complete set of independent first integrals, Arxiv (2011)

  28. Sadovskaia, N.: Inverse problem in theory of ordinary differential equations, Thesis Ph. D., Univ. Politécnica de Cataluña, 2002 (in Spanish)

  29. Sadovskaia, N., Ramírez, R.: Differential equations of first order with given set of partial integrals, Technical Report MA II-IR-99-00015 Universitat Politecnica de Catalunya, (1999) (in Spanish)

  30. Sundermeyer, K.: Constrained Dynamics. Lecture Notes in Physics, vol. 169. Spriger, NY (1982)

  31. Suslov, G.K.: On a particular variant of d’Alembert principle. Math. Sb. 22, 687–691 (1901). (in Russian)

    Google Scholar 

  32. Suslov, G.K.: Opredilienyie silovoi funkcyi po zadanniem shasnim integralam. Ph.D, Kiev (in Russian) (1890)

  33. Suslov, G.K: Theoretical Mechanics. M.-L.: Gostechizdat (1946)

  34. Synge, J.L.: On the geometry of dynamics. Philos. Trans. R. Soc. Lond. A 226, 31–106 (1926)

    Article  MATH  Google Scholar 

  35. Szebehely, V.: Open problems on the eve of the next millenium. Celest. Mech. 65, 205–211 (1996)

    Article  MathSciNet  Google Scholar 

  36. Takhtajan, L.: On foundation of the generalized Nambu mechanics. Commun. Math. Phys. 160, 295–315 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  37. Whittaker, E.T.: A Treatise on the Analytic Dynamics of Particles and Rigid Bodies. Cambridge University Press, Cambridge (1959)

    Google Scholar 

Download references

Acknowledgments

The first author is partially supported by a MINECO/FEDER Grant MTM2008-03437 and MTM2013-40998-P, an AGAUR grant number 2013SGR-568, an ICREA Academia, the Grants FP7-PEOPLE-2012-IRSES 318999 and 316338, FEDER-UNAB10-4E-378, and a CAPES grant number 88881.030454/2013-01 from the program CSF-PVE. The second author was partly supported by the Spanish Ministry of Education through projects TSI2007-65406-C03-01 “AEGIS” and Consolider CSD2007-00004 “ES”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaume Llibre.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Llibre, J., Ramírez, R. & Sadovskaia, N. Inverse Approach in Ordinary Differential Equations: Applications to Lagrangian and Hamiltonian Mechanics. J Dyn Diff Equat 26, 529–581 (2014). https://doi.org/10.1007/s10884-014-9390-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-014-9390-1

Keywords

Mathematics Subject Classification

Navigation