Skip to main content
Log in

Fronts Between Periodic Patterns for Bistable Recursions on Lattices

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

Bistable space–time discrete systems commonly possess a large variety of stable stationary solutions with periodic profile. In this context, it is natural to ask about the fate of trajectories composed of interfaces between steady configurations with periodic pattern and in particular, to study their propagation as traveling fronts. Here, we investigate such fronts in piecewise affine bistable recursions on the one-dimensional lattice. By introducing a definition inspired by symbolic dynamics, we prove the existence of front solutions and uniqueness of their velocity, upon the existence of their ground patterns. Moreover, the velocity dependence on parameters and the co-existence of several fronts with distinct ground patterns are also described. Finally, robustness of the results to small \(C^1\)-perturbations of the piecewise affine map is argued by mean continuation arguments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Afraimovich, V.S., Bunimovich, L.: Density of defects and spatial entropy in extended systems. Physica D 80, 277–288 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Afraimovich, V.S., Fernandez, B.: Topological properties of linearly coupled expanding map lattices. Nonlinearity 13, 973–993 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Afraimovich, V.S., Glebsky, L.Y., Nekorkin, V.I.: Stability of stationary states and topological spatial chaos in multidimensional lattice dynamical systems. Random Comput. Dyn. 2, 287–303 (1994)

    MathSciNet  MATH  Google Scholar 

  4. Aronson, D.G., Weinberger, H.F.: Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation. In: Partial Differential Equations and Related Topics, Lecture Notes Mathematics, vol. 446, pp. 5–49. Springer, Berlin (1975)

  5. Bates, P.C., Chen, X., Chmaj, A.: Traveling waves of bistable dynamics on a lattice. SIAM J. Math. Anal. 35, 520–546 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bates, P.C., Fife, P.C., Ren, X., Wang, X.: Traveling waves in a convolution model for phase transitions. Arch. Ration. Mech. Anal. 138, 105–136 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Berestycki, H., Hamel, F., Roques, L.: Analysis of the periodically fragmented environment model : II—biological invasions and pulsating travelling fronts. J. Math. Pures Appl. 84, 1101–1146 (2005)

    MathSciNet  MATH  Google Scholar 

  8. Chazottes, J.-R., Fernandez, B. (eds.): Dynamics of Coupled Map Lattices and of Related Spatially Extended Systems, Lecture Notes in Physics, vol. 671. Springer, Berlin (2005)

  9. Chen, X.: Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations. Adv. Diff. Equ. 2, 125–160 (1997)

    MATH  Google Scholar 

  10. Chow, S.-N., Mallet-Paret, J., Van Vleck, E.S.: Pattern formation and spatial chaos in spatially discrete evolution equations. Random Comput. Dyn. 4, 109–178 (1996)

    MATH  Google Scholar 

  11. Collet, P., Eckmann, J.-P.: Instabilities and fronts in extended systems. Princeton University Press, Princeton (1990)

  12. Coombes, S., Laing, C.R.: Pulsating fronts in periodically modulated neural field models. Phys. Rev. E 83, 011912 (2011)

    Article  MathSciNet  Google Scholar 

  13. Coullet, P., Elphick, C., Repaux, D.: Nature of spatial chaos. Phys. Rev. Lett. 58, 431 (1987)

    Article  MathSciNet  Google Scholar 

  14. Coutinho, R., Fernandez, B.: http://www.cpt.univ-mrs.fr/~bastien/Fronts.html. Accessed Jan 2012

  15. Coutinho, R., Fernandez, B.: Extended symbolic dynamics in bistable CML: existence and stability of fronts. Physica D 108, 60–80 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Coutinho, R., Fernandez, B.: On the global orbits in a bistable CML. Chaos 7, 301–310 (1997)

    Article  MATH  Google Scholar 

  17. Coutinho, R., Fernandez, B.: Fronts and interfaces in bistable extended mappings. Nonlinearity 11, 1407–1433 (1998)

    Google Scholar 

  18. Coutinho, R., Fernandez, B.: Fronts in extended systems of bistable maps coupled via convolutions. Nonlinearity 17, 23–47 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Coutinho, R., Fernandez, B., Lima, R., Meyroneinc, A.: Discrete time piecewise affine models of genetic networks. J. Math. Biol. 52, 524–570 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Defontaines, A.-D., Pomeau, Y., Rostand, B.: Chain of coupled bistable oscillators: a model. Physica D 46, 201–216 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  21. Eckmann, J.-P., Proccacia, I.: Onset of defect-mediated turbulence. Phys. Rev. Lett., 66, 891 (1991)

    Google Scholar 

  22. Elaydi S.: An introduction to difference equations. Springer, New York (1996)

  23. Fife, P.C., McLeod, J.B.: The approach of solutions of nonlinear diffusion equations to travelling front solutions. Arch. Ration. Mech. Anal. 65, 335–361 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hamel, F., Roques, L.: Uniqueness and stability properties of monostable pulsating fronts. J. Eur. Math. Soc. 13, 345–390 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jin, Y., Zhao, X.-Q.: Spatial dynamics of a discrete-time population model in a periodic lattice habitat. J. Dyn. Differ. Equ. 21, 501–525 (2009)

    Google Scholar 

  26. Keener, J.P.: Propagation and its failure in coupled systems of discrete cells. SIAM J. Appl. Math. 47, 556–572 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kocic, V., Ladas, G.: Global behaviour of nonlinear difference equations of higher order with applications. Kluwer, Dordrecht (1993)

  28. Lui, R.: Biological growth and spread modeled by systems of recursions. Math. Biosci. 93, 269–295 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mallet-Paret, J.: The global structure of traveling waves in spatially discrete dynamical systems. J. Dyn. Differ. Equ. 11, 49–127 (1997)

    Article  MathSciNet  Google Scholar 

  30. Weinberger, H.F.: Long-time behavior of a class of biological models. SIAM J. Math. Anal. 13, 353–396 (1982)

    Google Scholar 

  31. Weinberger, H.F.: On spreading speeds and traveling waves for growth and migration models in a periodic habitat. J. Math. Biol. 45, 511–548 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Xin, J.: Front propagation in heterogeneous media. SIAM Rev. 42, 161–230 (2000)

    Article  MathSciNet  Google Scholar 

  33. Zeidler, E.: Nonlinear functional analysis and its applications: I. Fixed point theorems. Springer, New York (1986)

    Book  MATH  Google Scholar 

  34. Zinner, B., Harris, G., Hudson, W.: Travelling fronts for the discrete fisher’s equation. J. Differ. Equ. 105, 46–62 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bastien Fernandez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coutinho, R., Fernandez, B. Fronts Between Periodic Patterns for Bistable Recursions on Lattices. J Dyn Diff Equat 25, 17–31 (2013). https://doi.org/10.1007/s10884-012-9285-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-012-9285-y

Keywords

Navigation