Skip to main content
Log in

Effect of mild hypocapnia on hemodynamic and bispectral index responses to tracheal intubation during propofol anesthesia in children

  • Original Research
  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

The purpose of this study was to investigate the effect of mild hypocapnia on hypertension and arousal response after tracheal intubation in children during propofol anesthesia. Forty-four children, American Society of Anesthesiologists physical status I–II patients, aged 3–9 years were randomly allocated to either the normocapnia group [end-tidal carbon dioxide tension (ETCO2 = 35 mmHg, n = 22)] or the hypocapnia group (ETCO2 = 25 mmHg, n = 22). Anesthesia was induced with propofol 2.5 mg/kg. Five minutes after the administration of rocuronium 0.6 mg/kg, laryngoscopy was attempted. The mean arterial pressure (MAP), heart rate (HR), SpO2 and bispectral index (BIS) were measured during induction and intubation periods. The maximal change in the BIS with tracheal intubation (ΔBIS) was defined as the difference between the baseline value and the maximal value within the first 5 min after intubation. Before tracheal intubation, the change in BIS over time was not different between the groups. After tracheal intubation, the changes in the MAP, HR and BIS over time were not significantly different between the groups. The mean value ± SD of ΔBIS was 5.7 ± 5.2 and 7.4 ± 5.5 in the normocapnia and hypocapnia groups, respectively, without any intergroup difference. This study showed that mild hypocapnia did not attenuate hemodynamic and BIS responses to tracheal intubation in children during propofol anesthesia. Our results suggested that hyperventilation has no beneficial effect on hemodynamic and arousal responses to tracheal intubation in children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Shoemaker JK, Vovk A, Cunningham DA. Peripheral chemoreceptor contributions to sympathetic and cardiovascular responses during hypercapnia. Can J Physiol Pharmacol. 2002;80:1136–44.

    Article  CAS  PubMed  Google Scholar 

  2. Reinstrup P, Ryding E, Ohlsson T, Dahm PL, Uski T. Cerebral blood volume (CBV) in humans during normo-and hypocapnia: influence of nitrous oxide (N2O). Anesthesiology. 2001;95:1079–82.

    Article  CAS  PubMed  Google Scholar 

  3. Zwiener U, Löbel S, Rother M, Funke M. Quantitative topographical analysis of EEG during nonstandardized and standardized hyperventilation. J Clin Neurophysiol. 1998;15:521–8.

    Article  CAS  PubMed  Google Scholar 

  4. Kim MC, Yi JW, Lee BJ, Kang JM. Influence of hypercapnia on cardiovascular responses to tracheal intubation. J Crit Care. 2009;24:627.e1–5.

    Article  Google Scholar 

  5. Strebel S, Lam AM, Matta B, Mayberg TS, Aaslid R, Newell DW. Dynamic and static cerebral autoregulation during isoflurane, desflurane, and propofol anesthesia. Anesthesiology. 1995;83:66–76.

    Article  CAS  PubMed  Google Scholar 

  6. Kaisti KK, Langsjo JW, Aalto S, et al. Effects of sevoflurane, propofol, and adjunct nitrous oxide on regional cerebral blood flow, oxygen consumption, and blood volume in humans. Anesthesiology. 2003;99:603–13.

    Article  CAS  PubMed  Google Scholar 

  7. Guignard B, Menigaux C, Dupont X, Fletcher D, Chauvin M. The effect of remifentanil on the bispectral index change and hemodynamic responses after orotracheal intubation. Anesth Analg. 2000;90:161–7.

    Article  CAS  PubMed  Google Scholar 

  8. Menigaux C, Guignard B, Adam F, Sessler DI, Joly V, Chauvin M. Esmolol prevents movement and attenuates the BIS response to orotracheal intubation. Br J Anaesth. 2002;89:857–62.

    Article  CAS  PubMed  Google Scholar 

  9. McFarlan CS, Anderson BJ, Short TG. The use of propofol infusions in paediatric anaesthesia: a practical guide. Paediatr Anaesth. 1999;9:209–16.

    CAS  PubMed  Google Scholar 

  10. Viby-Mogensen J, Engbaek J, Eriksson LI, Gramstad L, Jensen E, Jensen FS, Koscielniak-Nielsen Z, Skovgaard LT, Ostergaard D. Good clinical research practice (GCRP) in pharmacodynamic studies of neuromuscular blocking agents. Acta Anaesthesiol Scand. 1996;40:59–74.

    Article  CAS  PubMed  Google Scholar 

  11. Kim JY, Lee JS, Park HY, Kim YB, Kwon Y, Kwak HJ. The effect of alfentanil versus ketamine on the intubation condition and hemodynamics with low-dose rocuronium in children. J Anesth. 2013;27:7–11.

    Article  PubMed  Google Scholar 

  12. Pandit JJ. The analysis of variance in anaesthetic research: statistics, biography and history. Anaesthesia. 2010;65:1212–20.

    Article  CAS  PubMed  Google Scholar 

  13. Kawaguchi M, Takamatsu I, Masui K, Kazama T. Effect of landiolol on bispectral index and spectral entropy responses to tracheal intubation during propofol anaesthesia. Br J Anaesth. 2008;101:273–8.

    Article  CAS  PubMed  Google Scholar 

  14. Talakoub R, Khodayari A, Saghaei M. Effect of controlled hyperventilation on the pressor response to laryngoscopy and tracheal intubation. Middle East J Anesthesiol. 2003;17:403–13.

    PubMed  Google Scholar 

  15. Ponte J, Sadler CL. Effect of thiopentone, etomidate and propofol on carotid body chemoreceptor activity in the rabbit and the cat. Br J Anaesth. 1989;62:41–5.

    Article  CAS  PubMed  Google Scholar 

  16. Enoki T, Tsuchiya N, Shinomura T, Nomura R, Fukuda K. Effect of hypercapnia on arterial hypotension after induction of anaesthesia. Acta Anaesthesiol Scand. 2005;49:687–91.

    Article  CAS  PubMed  Google Scholar 

  17. Hayashida M, Chinzei M, Komatsu K, Yamamoto H, Tamai H, Orii R, Hanaoka K, Murakami A. Detection of cerebral hypoperfusion with bispectral index during paediatric cardiac surgery. Br J Anaesth. 2003;90:694–8.

    Article  CAS  PubMed  Google Scholar 

  18. Hayashi K, Fujikawa M, Sawa T. Hyperventilation-induced hypocapnia changes the pattern of electroencephalographic bicoherence growth during sevoflurane anaesthesia. Br J Anaesth. 2008;101:666–72.

    Article  CAS  PubMed  Google Scholar 

  19. Turnbull D, Furlonger A, Andrzejowski J. The influence of changes in end-tidal carbon dioxide upon the Bispectral Index. Anaesthesia. 2008;63:458–62.

    Article  CAS  PubMed  Google Scholar 

  20. Patel VM, Maulsby RL. How hyperventilation alters the electroencephalogram: a review of controversial viewpoints emphasizing neurophysiological mechanisms. J Clin Neurophysiol. 1987;4:101–20.

    Article  CAS  PubMed  Google Scholar 

  21. Severinghaus JW, Lassen N. Step hypocapnia to separate arterial from tissue PCO2 in the regulation of cerebral blood flow. Circ Res. 1967;20:272–8.

    Article  CAS  PubMed  Google Scholar 

  22. Karsli C, Luginbuehl I, Bissonnette B. The cerebrovascular response to hypocapnia in children receiving propofol. Anesth Analg. 2004;99:1049–52.

    Article  CAS  PubMed  Google Scholar 

  23. Strebel S, Kaufmann M, Guardiola PM, Schaefer HG. Cerebral vasomotor responsiveness to carbon dioxide is preserved during propofol and midazolam anesthesia in humans. Anesth Analg. 1994;78:884–8.

    Article  CAS  PubMed  Google Scholar 

  24. Wahba RW, Tessler MJ. Misleading end-tidal CO2 tensions. Can J Anaesth. 1996;43:862–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Yeop Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwak, H.J., Kim, J.Y., Lee, K.C. et al. Effect of mild hypocapnia on hemodynamic and bispectral index responses to tracheal intubation during propofol anesthesia in children. J Clin Monit Comput 29, 29–33 (2015). https://doi.org/10.1007/s10877-014-9564-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-014-9564-8

Keywords

Navigation