Skip to main content
Log in

Phase Transfer of Gold Metallized DNA

  • Brief Communication
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

We report a simple solution based method for the gold (Au) metallization of DNA resulting in a Au nanowire network. Advantage of solution based approach is that it allows the removal of excess gold (Au+3) ions by extraction with tetraoctylammonium bromide (TOAB) in order to avoid non specific metallization. Further it has been shown that Au metallized DNA obtained in aqueous phase can be transferred to organic phase using hexadecyl aniline (HDA). Au metallized DNA has potential application in nanoscale devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

References

  1. J. E. Green, J. W. Choi, A. Boukai, Y. Bunimovich, E. Johnston-Halperin, E. DeIonno, Y. Luo, B. A. Sheriff, K. Xu, Y. S. Shin, H.-R. Tseng, J. F. Stoddart, and J. R. Heath (2007). Nature 445, 414.

    Article  CAS  Google Scholar 

  2. T. Ito and S. Okazaki (2000). Nature 406, 1027.

    Article  CAS  Google Scholar 

  3. J. V. Barth, G. Costantini, and K. Kern (2005). Nature 437, 671.

    Article  CAS  Google Scholar 

  4. K. Terabe, T. Hasegawa, T. Nakayama, and M. Aono (2005). Nature 433, 47.

    Article  CAS  Google Scholar 

  5. C. M. Niemeyer (2001). Angew. Chem. Int. Ed. Engl. 40, 4128.

    Article  CAS  Google Scholar 

  6. S. Mann (1993). Nature 365, 499.

    Article  CAS  Google Scholar 

  7. S. Mann and G. A. Ozin (1996). Nature 382, 313.

    Article  CAS  Google Scholar 

  8. A. Ongaro, F. Griffin, P. Beecher, L. Nagle, D. Iacopino, A. Quinn, G. Redmond, and D. Fitzmaurice (2005). Chem. Mater. 17, 1959.

    Article  CAS  Google Scholar 

  9. G. H. Woehrle, M. G. Warner, and J. E. Hutchison (2004). Langmuir 20, 5982.

    Article  CAS  Google Scholar 

  10. O. Harnack, W. E. Ford, A. Yasuda, and J. M. Wessels (2002). Nano Lett. 2, 919.

    Article  CAS  Google Scholar 

  11. M. Ganguli, J. V. Babu, and S. Maiti (2004). Langmuir 20, 5165.

    Article  CAS  Google Scholar 

  12. A. Kumar, M. Pattarkine, M. Bhadbhade, A. B. Mandale, K. N. Ganesh, S. S. Datar, C. V. Dharmadhikari, and M. Sastry (2001). Adv. Mater. 13, 341.

    Article  CAS  Google Scholar 

  13. G. Braun, K. Inagaki, R. A. Estabrook, D. K. Wood, E. Levy, A. N. Cleland, G. F. Strouse, and N. O. Reich (2005). Langmuir 21, 10699.

    Article  CAS  Google Scholar 

  14. J. D. Le, Y. Pinto, N. C. Seeman, K. Musier-Forsyth, T. A. Taton, and R. A. Kiehl (2004). Nano Lett. 4, 2343.

    Article  CAS  Google Scholar 

  15. G. Wang and R. W. Murray (2004). Nano Lett. 4, 95.

    Article  CAS  Google Scholar 

  16. H. Nakao, H. Shiigi, Y. Yamamoto, S. Tokonami, T. Nagaoka, S. Sugiyama, and T. Ohtani (2003). Nano Lett. 3, 1391.

    Article  CAS  Google Scholar 

  17. Z. Deng, Y. Tian, S.-H. Lee, A. E. Ribbe, and C. Mao (2005). Angew. Chem. Int. Ed. Engl. 44, 3582.

    Article  CAS  Google Scholar 

  18. N. C. Seeman (2003). Nature 421, 427.

    Article  Google Scholar 

  19. A. P. Alivisatos, K. P. Johnsson, X. G. Peng, T. E. Wilson, C. J. Loweth, M. P. Bruchez, and P. G. Schultz (1996). Nature 382, 609.

    Article  CAS  Google Scholar 

  20. C. J. Loweth, W. B. Caldwell, X. Peng, A. P. Alivisatos, and P. G. Schultz (1999). Angew. Chem. Int. Ed. Engl. 38, 1808.

    Article  CAS  Google Scholar 

  21. A. Fu, C. M. Micheel, J. Cha, H. Chang, H. Yang, and A. P. Alivisatos (2004). J. Am. Chem. Soc. 126, 10832.

    Article  CAS  Google Scholar 

  22. C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff (1996). Nature 382, 607.

    Article  CAS  Google Scholar 

  23. R. C. Mucic, J. J. Storhoff, C. A. Mirkin, and R. L. Letsinger (1998). J. Am. Chem. Soc. 120, 12674.

    Article  CAS  Google Scholar 

  24. J. J. Storhoff, A. A. Lazarides, C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and G. C. Schatz (2000). J. Am. Chem. Soc. 122, 4640.

    Article  CAS  Google Scholar 

  25. J. J. Storhoff, R. Elghanian, R. C. Mucic, C. A. Mirkin, and R. L. Letsinger (1998). J. Am. Chem. Soc. 120, 1959.

    Article  CAS  Google Scholar 

  26. R. Jin, G. Wu, Z. Li, C. A. Mirkin, and G. C. Schatz (2003). J. Am. Chem. Soc. 125, 1643.

    Article  CAS  Google Scholar 

  27. E. Braun, Y. Eichen, U. Sivan, and G. Ben-Yoseph (1998). Nature 391, 775.

    Article  CAS  Google Scholar 

  28. W. E. Ford, O. Harnack, A. Yasuda, and J. M. Wessels (2001). Adv. Mater. 13, 1793.

    Article  CAS  Google Scholar 

  29. M. Mertig, L. C. Ciacchi, R. Seidel, W. Pompe, and A. De Vita (2002). Nano Lett. 2, 841.

    Article  CAS  Google Scholar 

  30. J. Richter, R. Seidel, R. Kirsch, M. Mertig, W. Pompe, J. Plaschke, and H. K. Schackert (2000). Adv. Mater. 12, 507.

    Article  CAS  Google Scholar 

  31. Z. Deng and C. Mao (2003). Nano Lett. 3, 1545.

    Article  CAS  Google Scholar 

  32. K. Keren, M. Kreuger, R. Gilad, G. Ben-Yoseph, U. Sivan, and E. Braun (2002). Science 297, 72.

    Article  CAS  Google Scholar 

  33. Y. Weizmann, F. Patolsky, I. Popov, and I. Willner (2004). Nano Lett. 4, 787.

    Article  CAS  Google Scholar 

  34. Q. Gu, C. Cheng, and D. T. Haynie (2005). Nanotechnology 16, 1358.

    Article  CAS  Google Scholar 

  35. C. F. Monson and A. T. Woolley (2003). Nano Lett. 3, 359.

    Article  CAS  Google Scholar 

  36. H. A. Becerril, P. Ludtke, B. M. Willardson, and A. T. Woolley (2006). Langmuir 22, 10140.

    Article  CAS  Google Scholar 

  37. D. Nyamjav and A. Ivanisevic (2005). Biomaterials 26, 2749.

    Article  CAS  Google Scholar 

  38. J. M. Kinsella and A. Ivanisevic (2007). Langmuir 23, 3886.

    Article  CAS  Google Scholar 

  39. T. Torimoto, M. Yamashita, S. Kuwabata, T. Sakata, H. Mori, and H. Yoneyama (1999). J. Phys. Chem. B 103, 8799.

    Article  CAS  Google Scholar 

  40. H. A. Becerril, R. M. Stoltenberg, C. F. Monson, and A. T. Woolley (2004). J. Mater. Chem. 14, 611.

    Article  CAS  Google Scholar 

  41. G. A. Burley, J. Gierlich, M. R. Mofid, H. Nir, S. Tal, Y. Eichen, and T. Carell (2006). J. Am. Chem. Soc. 128, 1398.

    Article  CAS  Google Scholar 

  42. M. Fischler, U. Simon, H. Nir, Y. Eichen, G. A. Burley, J. Gierlich, P. M. E. Gramlich, and T. Carell (2007). Small 3, 1049.

    Article  CAS  Google Scholar 

  43. D. V. Leff, L. Brandt, and J. R. Heath (1996). Langmuir 12, 4723.

    Article  CAS  Google Scholar 

  44. M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman (1994). J. Chem. Soc. Chem Commun. 801.

  45. S. Underwood and P. Mulvaney (1994). Langmuir 10, 3427.

    Article  CAS  Google Scholar 

  46. B. I. Kankia, V. Buckin, and V. A. Bloomfield (2001). Nucleic Acids Res. 29, 2795.

    Article  CAS  Google Scholar 

  47. L. Yunping, M.-Z. Wolfgang, F. Steffen, S. Günter, T. Maria, and K. Hubert (2003). Angew. Chem. Int. Ed. Engl. 42, 2853.

    Article  Google Scholar 

  48. S. Tuukkanen, J. J. Toppari, A. Kuzyk, L. Hirviniemi, V. P. Hytönen, T. Ihalainen, and P. Törmä (2006). Nano Lett. 6, 1339.

    Article  CAS  Google Scholar 

  49. S. Tuukkanen, A. Kuzyk, J. J. Toppari, H. Häkkinen, V. PHytönen, E. Niskanen, M. Rinkiö, P. Törmä (2007). Nanotechnology 18, Art. No. 295204.

  50. C. S. Lao, J. Liu, P. Gao, L. Zhang, D. Davidovic, R. Tummala, and Z. L. Wang (2006). Nano Lett. 6, 263.

    Article  CAS  Google Scholar 

  51. K. Oh, J. H. Chung, J. J. Riley, Y. Liu, and W. K. Liu (2007). Langmuir 23, 11932.

    Article  CAS  Google Scholar 

  52. D. I. Suh, S. Y. Lee, J. H. Hyung, T. H. Kim, and S. K. Lee (2008). J. Phys. Chem. C 112, 1276.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the EU Marie Curie Research Training Network “CIPSNAC” (Contract no. MRTN-CT-2003-504932) for financial support and A. S. Swami is grateful to the European Community for granting her a Marie Curie postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anita S. Swami or Dominique Langevin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swami, A.S., Brun, N. & Langevin, D. Phase Transfer of Gold Metallized DNA. J Clust Sci 20, 281–290 (2009). https://doi.org/10.1007/s10876-009-0243-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-009-0243-8

Keywords

Navigation