Skip to main content
Log in

Analysis of annual cyclic variations in total ozone column over Indian region

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Annual Cyclic Variations (ACV) in the Total Ozone Column (TOC) were estimated in latitudinally averaged Multi Sensor Reanalysis (MSR) monthly mean TOC time-series data-set from Jan 1979 to Dec 2008 for Indian region. The TOC contents over any latitude is controlled by the photochemistry and dynamics present in different regions of the stratosphere and troposphere, correlation between ACV in TOC, and ACV in other climatic and dynamical factors—(i) Solar Insolation on a horizontal surface at the top of the atmosphere (ETSI); (ii) Zonal Wind at 30 hPa pressure level (ZW); (iii) Meridional Wind at 30 hPa pressure level (MW); and (iv) Air Temperature at 30 hPa pressure level (AT)—were taken into account to understand their role in the annual cyclic variability present in the TOC over Indian region. Contributions of ACV present in these climatic and dynamical factors to the ACV in TOC were ascertained by performing a multiple linear regression analysis by taking ACV in ETSI, ACV in ZW and ACV in AT as independent variables (co-variates) for ACV in TOC. It is concluded that in the tropical part of Indian region ACV in TOC is largely controlled by the photochemistry; whereas in the subtropical part of the region, the dynamics present in the stratosphere mainly decides ACV in TOC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andersen, S.B., et al.: Comparison of recent modeled and observed trends in total column ozone. J. Geophys. Res. (2006). doi:10.1029/2005JD006091

  • Bowman, K.P., Krueger, A.J.: A global climatology of total ozone from the nimbus 7 total ozone mapping spectrometer. J. Geophys. Res. (1985). doi:10.1029/JD090iD05p07967

  • Chakrabarty, D.K., Peshin, S.K.: Behavior of ozone over Indian region after Pinatubo eruption. J.of Geophys. Res. (1997). doi:10.1029/96JD02954

  • Cockell, C.S., Blaustein, A.R.: Ecosystems, Evolution and Ultraviolet Radiation. Springer, New York (2001)

    Google Scholar 

  • Crutzen, P.J.: Ozone in the troposphere. In: Singh, H.B. (ed.) Composition, Chemistry, and Climate of the Atmosphere. Van Nostrand Reinhold, New York (1995)

    Google Scholar 

  • Ganguly, N.D., Iyer, K.N.: Study of variations in Columnar Ozone Concentration at Rajkot. J. Indian Geophys. Union 9(3), 189–196 (2005)

    Google Scholar 

  • Iqbal, M.: An Introduction to Solar Radiation. Academic Press, Toronto (1983)

    Google Scholar 

  • Khalil, M.A.K., Rasmussen, R.A.: Atmospheric methane: recent global trends. Environ. Sci. Technol. (1990). doi:10.1021/es00074a014

  • Lal, S., Naja, M., Subbaraya, B.H.: Seasonal variations in surface ozone and its precursors over an urban site in India. Atmos. Environ. (2000). doi:10.1016/S1352-2310(99)00510-5

  • Logan, J.A.: An analysis of ozonesonde data for the lower stratosphere: recommendations for testing models. J. Geophys. Res. (1999). doi:10.1029/1999JD900216

  • Logan, J.A., Kirchhoff, V.W.J.H.: Seasonal variations of tropospheric ozone at Natal, Brazil. J. Geophys. Res. (1986). doi:10.1029/JD091iD07p07875

  • Londhe, A.L., Bhosale, C.S., Kulkarni, J.R., Kumari, B.P., Jadhav, D.B.: Space-time variability of ozone over the Indian region for the period 1981–1998. J. Geophys. Res. (2003). doi:10.1029/2002JD002942

  • London, J.: The observed distribution of atmospheric ozone and its variations. In: Whitten, R.C., Prasad, S.S. (eds.) Ozone in the Free Atmosphere, pp. 11–80. Van Nostrand Reinhold, New York (1985)

    Google Scholar 

  • Maeder, J.A., Staehelin, J., Brunner, D., Stahel, W.A., Wohltmann, I., Peter, T.: Statistical modeling of total ozone: selection of appropriate explanatory variables. J. Geophys. Res. 112(D11), D11108 (2007)

  • Manney, G.L., et al.: Unprecedented Arctic ozone loss in 2011. Nature (2011). doi:10.1038/nature10556

  • McCormick, M.P., Zawodny, J.M., Veiga, R.E., Larson, J.C., Wang, P.H.: An overview of SAGE I and II measurements. Planet. Space Sci. 37, 1567–1586 (1989)

    Article  Google Scholar 

  • Mittal, M.L., Hess, P.G., Jain, S.L., Arya, B.C., Sharma, C.: Surface ozone in the Indian region. Atmos. Environ. (2007). doi:10.1016/j.atmosenv.2007.04.035

  • Naja, M., Lal, S.: Surface ozone and precursor gases at Gadanki (13.5°N, 79.2°E), a tropical rural site in India. J. Geophys. Res. (2002). doi:10.1029/2001JD000357

  • Naja, M., Lal, S., Chand, D.: Diurnal and seasonal variabilities in surface ozone at a high altitude site Mt Abu (24.6°N, 72.7°E, 1680 m asl) in India. Atmos. Environ. (2003). doi:10.1016/S1352-2310(03)00565-X

  • Osso, A., Sola, Y., Bech, J., Lorente, J.: Evidence for the influence of the North Atlantic Oscillation on the total ozone column at northern low latitudes and midlatitudes during winter and summer seasons. J. Geophys. Res. 116, D24 (2011). doi:10.1029/2011JD016539

    Article  Google Scholar 

  • Raj, P.E., Devara, P.C.S., Pandithurai, G., Maheskumar, R.S., Dani, K.K., Saha, S.K., Sonbawne, S.M.: Variability in Sun photometer–derived total ozone over a tropical urban station. J. Geophys. Res. (2004). doi:10.1029/2003JD004195

  • Rieder, H.E., Staehelin, J., Maeder, J.A., Peter, T., Ribatet, M., Davison, A.C., Stübi, R., Weihs, P., Holawe, F.: Extreme events in total ozone over Arosa—Part 1: application of extreme value theory. Atmos. Chem. Phys. 10, 10021–10031 (2010)

    Article  Google Scholar 

  • Saha, K.R.: Earth’s Atmosphere: Its Physics and Dynamics. Springer, Berlin-Heidelberg (2008)

    Google Scholar 

  • Schnadt, P.C., Staehelin, J., Brunner, D.: Missing stratospheric ozone decrease at southern hemisphere middle latitudes after Mt. Pinatubo: a dynamical perspective. J. Atmos. Sci. 68(9), 1922–1945 (2011)

    Article  Google Scholar 

  • Semeniuk, K., Shepherd, T.G.: Mechanism for tropical upwelling in the stratosphere. J. Atmos. Sci. 58(21), 3097–3115 (2001)

    Article  Google Scholar 

  • Shen, T.L., Wooldridge, P.J., Molina, M.J.: Stratospheric pollution and ozone depletion. In: Singh, H.B. (ed.) Composition, Chemistry, and Climate of the Atmosphere. Van Nostrand Reinhold, New York (1995)

    Google Scholar 

  • Singh, A., Sarin, S.M., Shanmugam, P., Sharma, N., Attri, A.K., Jain, V.K.: Ozone distribution in the urban environment of Delhi during winter months. Atmos. Environ. (1997). doi:10.1016/S1352-2310(97)00138-6

  • Staehelin, J., Harris, N.R.P., Appenzeller, C., Eberhard, J.: Ozone trends: a review. Rev. Geophys. (2001). doi:10.1029/1999RG000059

  • Steinbrecht, W., Hassler, B., Bruhl, C., Dameris, M., Giorgetta, M.A., Grewe, V., Manzini, E., Matthes, S., Schnadt, C., Steil, B., Winkler, P.: Interannual variation patterns of total ozone and lower stratospheric temperature in observations and model simulations. Atmos. Chem. Phys. 6, 349–374 (2006)

    Article  Google Scholar 

  • Tandon, A., Attri, A.K.: Trends in total ozone column over India: 1979–2008. Atmos. Environ. (2011). doi:10.1016/j.atmosenv.2011.01.008

  • Tung, K.K., Yang, H.: Dynamic variability of column ozone. J. Geophys. Res. (1988a). doi:10.1029/JD093iD09p11123

  • Tung, K.K., Yang, H.: Dynamical component of seasonal and year to year changes in Antarctic and global ozone. J. Geophys. Res. (1988b). doi:10.1029/JD093iD10p12537

  • van der A, R.J., Allaart, M.A.F., Eskes, H.J.: Multi sensor reanalysis of total ozone. Atmos. Chem. Phys. (2010). doi:10.5194/acp-10-11277-2010

  • Varshney, C.K., Attri, A.K.: Impact of stratospheric ozone depletion on terrestrial ecosystem. In: Majumdar, S.K., Brenner, F.J., Miller, E.W., Rosenfield, L.M. (eds.) Environmental Contaminants and Health. Pennsylvania Academy of Sciences, USA (1995)

    Google Scholar 

  • Weatherhead, E.C., Andersen, S.B.: The search for signs of recovery of the ozone layer. Nature (2006). doi:10.1038/nature04746

  • Weber, M., Dikty, S., Burrows, J.P., Garny, H., Dameris, M., Kubin, A., Abalichin, J., Langematz, U.: The Brewer-Dobson circulation and total ozone from seasonal to decadal time scales. Atmos. Chem. Phys. (2011). doi:10.5194/acp-11-11221-2011

  • WMO (World Meteorological Organization): Scientific Assessment of Ozone Depletion: 2006. Global Ozone Research and Monitoring Project—Report No. 50, 572 pp., Geneva, Switzerland (2007)

  • WMO (World Meteorological Organization): Scientific Assessment of Ozone Depletion: 2010. Global Ozone Research and Monitoring Project—Report No. 52, 516 pp., Geneva, Switzerland (2011)

  • Yonemura, S., et al.: Annual and El Niño-Southern Oscillation variations in observations of in situ stratospheric ozone over Peninsular Malaysia. J. Geophys. Res. (2002). doi:10.1029/2001JD000518

  • Zou, H.: Seasonal variation and trends of TOMS ozone over Tibet. Geophys. Res. Lett. (1996). doi:10.1029/96GL00767

  • Zou, C.-Z., Gao, M., Goldberg, M.D.: Error structure and atmospheric temperature trends in observations from the Microwave Sounding Unit. J. Clim. 22(7), 1661–1681 (2009). doi:10.1175/2008JCLI2233.1

    Article  Google Scholar 

Download references

Acknowledgments

Authors acknowledge Tropospheric Emission Monitoring Internet Service (TEMIS) for MSR TOC data-sets and Physical Science Division, Earth System Research Laboratory, National Oceanic & Atmospheric Administration (PSD, ESRL, NOAA) for NCEP-DOE Reanalysis-2 monthly mean time-series data-sets of Zonal Wind, Air Temperature and Meridional Wind used in present study. One of the authors, AT, acknowledges UGC (India) and DST (India) for their financial support in the form of fellowships and award of Research Project for Young Scientists. The financial assistance provided by CSIR (India) in the form of a research project to AKA is also acknowledged. We profusely thank anonymous reviewer for his critical and detailed appraisal of this manuscript, which has contributed immensely in the shaping of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun K. Attri.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOC 35 kb)

Figure S1

Calculated Q-Q plots for ACV-TOC data for respective months over 0–40°N. (DOCX 58 kb)

Figure S2

Histograms showing ACV (DU) in zonally averaged (with 5° latitudinal resolution) monthly means MSR TOC time-series data-set (Jan 1979 to Dec 2008) for Indian region. (DOCX 39 kb)

Figure S3

Plotted values for R 2 for ACV-TOC’s regression fit to the co-variates, individually (Top panel). Middle panel of the figure show R 2 obtained from multiple regression fit of ACV-TOC to the co-variates taken in pair. Lowest panel plot the R 2 values obtained from multiple regression fit of ACV-TOC to all the co-variates taken together (ETSI, ZW and AT). (DOCX 425 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tandon, A., Yadav, S. & Attri, A.K. Analysis of annual cyclic variations in total ozone column over Indian region. J Atmos Chem 69, 321–335 (2012). https://doi.org/10.1007/s10874-012-9243-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10874-012-9243-4

Keywords

Navigation