Skip to main content
Log in

Huntington’s disease and mitochondrial alterations: emphasis on experimental models

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Huntington’s disease (HD) is an inheritable neurological disorder coursing with degeneration of basal ganglia and producing chorea and dementia. One common factor accounting for neurodegeneration in this disorder is mitochondrial deterioration at both morphologic and functional levels. The development of experimental models in animals or cell preparations to resemble pathologic and pathogenic conditions of this disorder has served for more than four decades to describe part of the mechanistic alterations that could be occurring in mitochondria of HD patients, and the subsequent design of therapeutic alternatives where mitochondrial alterations are the primary target. In this miniriview we describe some of the most relevant studies at the experimental level, giving support to the hypothesis that mitochondria play a central role in HD pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acevedo-Torres K, Berríos L, Rosario N, Dufault V, Skatchkov S, Eaton MJ, Torres-Ramos CA, Ayala-Torres S (2009) DNA Repair 8:126–136

    CAS  Google Scholar 

  • Andreassen OA, Dedeoglu A, Ferrante RJ, Jenkins BG, Ferrante KL, Thomas M, Friedlich A, Browne SE, Schilling G, Borchelt DR, Hersch SM, Ross CA, Beal MF (2001) Neurobiol Dis 8:479–491

    CAS  Google Scholar 

  • Atwal RS, Xia J, Pinchev D, Taylor J, Epand RM, Truant R (2007) Hum Mol Genet 16:2600–2615

    CAS  Google Scholar 

  • Bae BI, Xu H, Igarashi S, Fujimuro M, Agrawal N, Taya Y, Hayward SD, Moran TH, Montell C, Ross CA, Snyder SH, Sawa A (2005) Neuron 47:29–41

    CAS  Google Scholar 

  • Banoei MM, Houshmand M, Panahi MS, Shariati P, Rostami M, Manshadi MD, Majidizadeh T (2007) Cell Mol Neurobiol 27:867–875

    CAS  Google Scholar 

  • Beal MF (1992) Ann Neurol 31:119–130

    CAS  Google Scholar 

  • Beal MF, Brouillet E, Jenkins BG, Ferrante RJ, Kowall NW, Miller JM, Storey E, Srivastava R, Rosen BR, Hyman BT (1993) J Neurosci 13:4181–4192

    CAS  Google Scholar 

  • Bordelon YM, Chesselet MF, Nelson D, Welsh F, Erecinska M (1997) J Neurochem 69:1629–1693

    CAS  Google Scholar 

  • Borlongan CV, Koutouzis TK, Freeman TB, Hauser RA, Cahill DW, Sanberg PR (1997) Brain Res Brain Res Protoc 1:253–257

    CAS  Google Scholar 

  • Brenuan WA, Bird ED, Aprille JR (1985) J Neurochem 44:1948–1950

    Google Scholar 

  • Brouillet E, Condé F, Beal MF, Hantraye P (1999) Prog Neurobiol 59:427–468

    CAS  Google Scholar 

  • Browne SE, Beal MF (2004) Neurochem Res 29:531–546

    CAS  Google Scholar 

  • Browne SE, Bowling AC, MacGarvey U, Baik MJ, Berger SC, Muqit MM, Bird ED, Beal MF (1997) Ann Neurol 41:646–653

    CAS  Google Scholar 

  • Büeler H (2010) Apoptosis In press

  • Burke JR, Enghild JJ, Martin ME, Jou YS, Myers RM, Roses AD, Vance JM, Strittmatter WJ (1996) Nat Med 2:347–350

    CAS  Google Scholar 

  • Butterworth J, Yates CM, Reynolds GP (1985) J Neurol Sci 67:161–171

    CAS  Google Scholar 

  • Chang DT, Rintoul GL, Pandipati S, Reynolds IJ (2006) Neurobiol Dis 22:388–400

    CAS  Google Scholar 

  • Chen CM, Wu YR, Cheng ML, Liu JL, Lee YM, Lee PW, Soong BW, Chiu DT (2007) Biochem Biophys Res Commun 359:335–340

    CAS  Google Scholar 

  • Choo YS, Johnson GV, MacDonald M, Detloff PJ, Lesort M (2004) Hum Mol Genet 13:1407–1420

    CAS  Google Scholar 

  • Ciammola A, Sassone J, Alberti L, Meola G, Mancinelli E, Russo MA, Squitieri F, Silani V (2006) Cell Death Differ 13:2068–2078

    CAS  Google Scholar 

  • Cooper AJ, Sheu KF, Burke JR, Strittmatter WJ, Blass JP (1998) Dev Neurosci 20:462–468

    CAS  Google Scholar 

  • Cudkowicz M, Kowall NW (1990) Ann Neurol 27:200–204

    CAS  Google Scholar 

  • Cui L, Jeong H, Borovecki F, Parkhurst CN, Tanese N, Krainc D (2004) Cell 127:59–69

    Google Scholar 

  • DiFiglia M (1997) Am J Psychiatry 154:1046

    CAS  Google Scholar 

  • Duran R, Barrero RJ, Morales B, Luna JD, Ramírez M, Vives F (2010) J Neural Transm 117:325–332

    CAS  Google Scholar 

  • Dykens JA (1994) J Neurochem 63:584–591

    CAS  Google Scholar 

  • Dykens JA (1997) Mitochondrial and free radical production and the etiology of neurodegenerative disease. In: Beal MF, Bodis-Wollner I, Howell N (eds) Neurodegenerative diseases: mitochondria and free radicals in pathogenesis. Wiley, New York, pp 29–55

    Google Scholar 

  • Dykens JA (1999) Free radicals and mitochondrial dysfunction in excitotoxicity and neurodegenerative diseases. In: Koliatos VE, Ratan VV (eds) Cell death and diseases of the nervous system. Humana, New Jersey, pp 45–68

    Google Scholar 

  • Dykens JA, Stern A, Trenkner E (1987) J Neurochem 49:1222–1228

    CAS  Google Scholar 

  • Elinos-Calderón D, Robledo-Arratia Y, Pérez-De La Cruz V, Pedraza-Chaverrí J, Ali SF, Santamaría A (2009) Exp Brain Res 197:287–296

    Google Scholar 

  • Elinos-Calderón D, Robledo-Arratia Y, Pérez-De La Cruz V, Maldonado PD, Galván-Arzate S, Pedraza-Chaverrí J, Santamaría A (2010) J Neural Transm 117:35–44

    Google Scholar 

  • Fernandes AM, Landeira-Fernandez AM, Souza-Santos P, Carvalho-Alves PC, Castilho RF (2008) Neurochem Res 33:1749–1758

    CAS  Google Scholar 

  • Ferreira IL, Nascimento MV, Ribeiro M, Almeida S, Cardoso SM, Grazina M, Pratas J, Santos MJ, Januário C, Oliveira CR, Rego AC (2010) Exp Neurol 222:243–255

    CAS  Google Scholar 

  • Furtado JC, Mazurek MF (1996) Exp Neurol 138:158–168

    CAS  Google Scholar 

  • Gines S, Seong IS, Fossale E, Ivanova E, Trettel F, Gusella JF, Wheeler VC, Persichetti F, MacDonald ME (2003) Hum Mol Genet 12:497–508

    CAS  Google Scholar 

  • Gunasekar PG, Borowitz JL, Isom GE (1998) J Pharmacol Ex Therap 285:236–241

    CAS  Google Scholar 

  • Gusella JF, Wexler NS, Conneally PM, Naylor SL, Anderson MA, Tanzi RE, Watkins PC, Ottina K, Wallace MR, Sakaguchi AY et al (1983) Nature 306:234–238

    CAS  Google Scholar 

  • Harper PS (1992) Hum Genet 89:365–376

    CAS  Google Scholar 

  • Holbert S, Denghien I, Kiechle T, Rosenblatt A, Wellington C, Hayden MR, Margolis RL, Ross CA, Dausset J, Ferrante RJ, Néri C (2001) Proc Natl Acad Sci USA 98:1811–1816

    CAS  Google Scholar 

  • Huang CC, Faber PW, Persichetti F, Mittal V, Vonsattel JP, MacDonald ME, Gusella JF (1998) Somat Cell Mol Genet 24:217–233

    CAS  Google Scholar 

  • Jacquard C, Trioulier Y, Cosker F, Escartin C, Bizat N, Hantraye P, Cancela JM, Bonvento G, Brouillet E (2007) FASEB J 20:1021–1023

    Google Scholar 

  • Jana NR, Zemskov EA, Wang Gh, Nukina N (2001) Hum Mol Genet 10:1049–1059

    CAS  Google Scholar 

  • Jenkins BG, Rosas HD, Chen YC, Makabe T, Myers R, MacDonald M, Rosen BR, Beal MF, Koroshetz WJ (1998) Neurology 50:1357–1365

    CAS  Google Scholar 

  • Kegel KB, Meloni AR, Yi Y, Kim YJ, Doyle E, Cuiffo BG, Sapp E, Wang Y, Qin ZH, Chen JD, Nevins JR, Aronin N, DiFiglia M (2002) J Biol Chem 277:7466–7476

    CAS  Google Scholar 

  • Kegel KB, Sapp E, Yoder J, Cuiffo B, Sobin L, Kim YJ, Qin ZH, Hayden MR, Aronin N, Scott DL, Isenberg G, Goldmann WH, DiFiglia M (2005) J Biol Chem 280:36464–36473

    CAS  Google Scholar 

  • Kish SJ, Lopes-Cendes I, Guttman M, Furukawa Y, Pandolfo M, Rouleau GA, Ross BM, Nance M, Schut L, Ang L, DiStefano L (1998) Arch Neurol 55:1299–1304

    CAS  Google Scholar 

  • Korde AS, Sullivan PG, Maragos WF (2005) J Neurotrauma 22:1142–1149

    Google Scholar 

  • Kroemer G, Reed JC (2000) Nat Med 6:513–519

    CAS  Google Scholar 

  • Kuhl DE, Phelps ME, Markham CH, Metter EJ, Riege WH, Winter J (1982) Ann Neurol 12:425–434

    CAS  Google Scholar 

  • Kumar P, Kumar A (2009) Prog Neuropsychopharmacol Biol Psychiatry 33:100–108

    CAS  Google Scholar 

  • Kuwert T, Lange HW, Langen KJ, Herzog H, Aulich A, Feinendegen LE (1990) Brain 113:1405–1423

    Google Scholar 

  • La-Fontaine M, Geddes JW, Banks A, Butterfield DA (2000) Brain Res 858:356–362

    CAS  Google Scholar 

  • Lees GJ (1993) J Neurol Sci 114:119–122

    CAS  Google Scholar 

  • Lemasters JJ, Qian T, Bradham CA, Brenner DA, Cascio WE, Trost LC, Nishimura Y, Nieminen AL, Herman B (1999) J Bioenerg Biomembr 31:305–319

    CAS  Google Scholar 

  • Li XJ, Li SH, Sharp AH, Nucifora FC Jr, Schilling G, Lanahan A, Worley P, Snyder SH, Ross CA (1995) Nature 378:398–402

    CAS  Google Scholar 

  • Lim D, Fedrizzi L, Tartari M, Zuccato C, Cattaneo E, Brini M, Carafoli E (2008) J Biol Chem 283:5780–5789

    CAS  Google Scholar 

  • Liot G, Bossy B, Lubitz S, Kushnareva Y, Sejbuk N, Bossy-Wetzel E (2009) Cell Death Differ 16:899–909

    CAS  Google Scholar 

  • Ludolph AC, He FS, Spencer PS, Hammerstad J, Sabri M (1991) Can J Neurol Sci 18:492–498

    CAS  Google Scholar 

  • Macdonald V, Halliday G (2002) Neurobiol Dis 10:378–386

    Google Scholar 

  • Maksimovic ID, Jovanovic MD, Colic M, Mihajlovic R, Micic D, Selakovic V, Ninkovic M, Malicevic Z, Rusic-Stojiljkovic M, Jovococ A (2001) Vojnosanit Pregl 58:237–242

    CAS  Google Scholar 

  • Mandavilli BS, Boldogh I, Van Houten B (2005) Molec Brain Res 133:215–223

    CAS  Google Scholar 

  • Martin RL, Lloyd HE, Cowan AI (1994) TINS 17:251–257

    CAS  Google Scholar 

  • Maus M, Marin P, Israel M, Glowinski J, Premont J (1999) Eur J Neurosci 11:3215–3224

    CAS  Google Scholar 

  • Milakovic T, Johnson GV (2005) J Biol Chem 280:30773–30782

    CAS  Google Scholar 

  • Milakovic T, Quintanilla RA, Johnson GV (2006) J Biol Chem 281:34785–34795

    CAS  Google Scholar 

  • Mirandola SR, Melo DR, Saito A, Castilho RF (2010) J Neurosci Res 88:630–639

    CAS  Google Scholar 

  • Murphy AN, Fiskum G, Beal MF (1999) Blood Flow Metab 19:231–245

    CAS  Google Scholar 

  • Nam E, Min LS, Eun KS, Seok JW, Maeng S, In IH (2005) Brain Res 1046:90–96

    CAS  Google Scholar 

  • Nasr P, Gursahani HI, Pang Z, Bondada V, Lee J, Hadley RW, Geddes JW (2003) Neurochem Int 43:89–99

    CAS  Google Scholar 

  • Orr AL, Li S, Wang CE, Li H, Wang J, Rong J, Xu X, Mastroberardino PG, Greenamyre JT, Li XJ (2008) J Neurosci 28:2783–2792

    CAS  Google Scholar 

  • Pandey M, Varghese M, Sindhu KM, Sreetama S, Navneet AK, Mohanakumar KP, Usha R (2008) J Neurochem 104:420–434

    CAS  Google Scholar 

  • Panov AV, Gutekunst CA, Leavitt BR, Hayden MR, Burke JR, Strittmatter WJ, Greenamyre JT (2002) Nat Neurosci 5:731–736

    CAS  Google Scholar 

  • Panov AV, Burke JR, Strittmatter WJ, Greenamyre JT (2003) Arch Biochem Biophys 410:1–6

    CAS  Google Scholar 

  • Panov AV, Lund S, Greenamyre JT (2005) Mol Cell Biochem 269:143–152

    CAS  Google Scholar 

  • Pérez MK, Paulson HL, Pendse SJ, Saionz SJ, Bonini NM, Pittman RN (1998) J Cell Biol 143(6):1457–1470

    Google Scholar 

  • Pérez-De La Cruz V, González-Cortés C, Galván-Arzate S, Medina-Campos ON, Pérez-Severiano F, Ali SF, Pedraza-Chaverrí J, Santamaría A (2005) Neuroscience 135:463–474

    Google Scholar 

  • Pérez-De La Cruz V, Königsberg M, Pedraza-Chaverri J, Herrera-Mundo N, Díaz-Muñoz M, Morán J, Fortoul-van der Goes T, Rondán-Zárate A, Maldonado PD, Ali SF, Santamaría A (2008) Eur J Neurosci 27:1075–1085

    Google Scholar 

  • Pérez-De La Cruz V, Elinos-Calderón D, Robledo-Arratia Y, Medina-Campos ON, Pedraza-Chaverrí J, Ali SF, Santamaría A (2009) Behav Brain Res 199:210–217

    Google Scholar 

  • Petrasch-Parwez E, Nguyen HP, Löbbecke-Schumacher M, Habbes HW, Wieczorek S, Riess O, Andres KH, Dermietzel R, Von Hörsten S (2007) J Comp Neurol 501:716–730

    Google Scholar 

  • Powers WJ, Videen TO, Markham J, McGee-Minnich L, Antenor-Dorsey JV, Hershey T, Perlmutter JS (2007) Proc Natl Acad Sci USA 104:2945–2949

    CAS  Google Scholar 

  • Prabhakaran K, Prabhakaran I, Li L, Borowitz JL, Isom GE (2002) J Pharmacol Exp Therap 303:510–519

    CAS  Google Scholar 

  • Puntel RL, Nogueira CW, Rocha JB (2005) Neurochem Res 30:225–235

    CAS  Google Scholar 

  • Reddy PH, Mao P, Manczak M (2009) Brain Res Rev 61:33–48

    CAS  Google Scholar 

  • Ribeiro CA, Grando V, Dutra Filho CS, Wannmacher CM, Wajner M (2006) J Neurochem 99:1531–1542

    CAS  Google Scholar 

  • Ryan AB, Zeitlin SO, Scrable H (2006) Neurobiol Dis 24:419–427

    CAS  Google Scholar 

  • Ryu JK, Kim SU, McLarnon JG (2003) Exp Neurol 183:700–704

    CAS  Google Scholar 

  • Sawa A, Wiegand GW, Cooper J, Margolis RL, Sharp AH, Lawler JF Jr, Greenamyre JT, Snyder SH, Ross CA (1999) Nat Med 5:1194–1198

    CAS  Google Scholar 

  • Sayer JA, Manczak M, Akileswaran L, Reddy PH, Coghlan VM (2005) Neuromolecular Med 7:297–310

    CAS  Google Scholar 

  • Schuck PF, Tonin A, da Costa Ferreira G, Rosa RB, Latini A, Balestro F, Perry ML, Wannmacher CM, de Souza Wyse AT, Wajner M (2007) Neurosci Res 57:277–288

    CAS  Google Scholar 

  • Seong IS, Ivanova E, Lee JM, Choo YS, Fossale E, Anderson M, Gusella JF, Laramie JM, Myers RH, Lesort M, MacDonald ME (2005) Hum Mol Genet 14:2871–2880

    CAS  Google Scholar 

  • Sheline CT, Behrens MM, Choi DW (2000) J Neurosci 20:3139–3146

    CAS  Google Scholar 

  • Shimohata T, Nakajima T, Yamada M, Uchida C, Onodera O, Naruse S, Kimura T, Koide R, Nozaki K, Sano Y, Ishiguro H, Sakoe K, Ooshima T, Sato A, Ikeuchi T, Oyake M, Sato T, Aoyagi Y, Hozumi I, Nagatsu T, Takiyama Y, Nishizawa M, Goto J, Kanazawa I, Davidson I, Tanese N, Takahashi H, Tsuji S (2002) Nat Genet 26:29–36

    Google Scholar 

  • Shin JY, Fang ZH, Yu ZX, Wang CE, Li SH, Li XJ (2005) J Cell Biol 171:1001–1012

    CAS  Google Scholar 

  • Silva-Adaya D, Pérez-De La Cruz V, Herrera-Mundo MN, Mendoza-Macedo K, Villeda-Hernández J, Binienda Z, Ali SF, Santamaría A (2008) J Neurochem 105:677–689

    CAS  Google Scholar 

  • Simpkins JW, Yi KD, Yang SH (2010) Front Neuroendocrinol 30:93–105

    Google Scholar 

  • Squitieri F, Cannella M, Sgarbi G, Maglione V, Falleni A, Lenzi P, Baracca A, Cislaghi G, Saft C, Ragona G, Russo MA, Thompson LM, Solaini G, Fornai F (2006) Mech Ageing Dev 127:217–220

    CAS  Google Scholar 

  • St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jäger S, Handschin C, Zheng K, Lin J, Yang W, Simon DK, Bachoo R, Spiegelman BM (2006) Cell 127:397–408

    CAS  Google Scholar 

  • Strehlow AN, Li JZ, Myers RM (2007) Hum Mol Genet 16:391–409

    CAS  Google Scholar 

  • Strong TV, Tagle DA, Valdes JM, Elmer LW, Boehm K, Swaroop M, Kaatz KW, Collins FS, Albin RL (1993) Nat Genet 5:259–265

    CAS  Google Scholar 

  • Struys-Ponsar C, Florence A, Gauthier A (1994) J Neural Transm Suppl 44:111–132

    CAS  Google Scholar 

  • Tabrizi SJ, Cleeter MW, Xuereb J, Taanman JW, Cooper JM, Schapira AH (1999) Ann Neurol 45:25–32

    CAS  Google Scholar 

  • Tang TS, Tu HP, Orban PC, Chan EYW, Hayden MR, Bezprozvanny I (2004) Eur J Neurosci 20:1779–1787

    Google Scholar 

  • The Huntington’s Disease Collaborative Research Group (1993) Cell 72:971–983

    Google Scholar 

  • Truant R, Atwal R, Burtnik A (2006) Biochem Cell Biol 84:912–917

    CAS  Google Scholar 

  • Trushina E, Dyer RB, Badger JD 2nd, Ure D, Eide L, Tran DD, Vrieze BT, Legendre-Guillemin V, McPherson PS, Mandavilli BS, Van Houten B, Zeitlin S, McNiven M, Aebersold R, Hayden M, Parisi JE, Seeberg E, Dragatsis I, Doyle K, Bender A, Chacko C, McMurray CT (2004) Mol Cell Biol 24:8195–8209

    CAS  Google Scholar 

  • Túnez I, Montilla P, Muñoz MC, Feijoo M, Salcedo M (2004) J Pineal Res 37:252–256

    Google Scholar 

  • Túnez I, Muñoz MC, Montilla M (2005) Pharmacology 74:113–118

    Google Scholar 

  • Túnez I, Tasset I, Pérez-De La Cruz V, Santamaría A (2010) Molecules 15:878–916

    Google Scholar 

  • Vender AD (1975) In: John Wiley and Sons (ed) Aminoacid metabolism. Wiley, USA, pp 172–177

    Google Scholar 

  • Vezzani A, Sangalli L, Wu HQ, Schwarcz R (1987) J Neural Transm 70:349–356

    CAS  Google Scholar 

  • Waelter S, Boeddrich A, Lurz R, Scherzinger E, Lueder G, Lehrach H, Wanker EE (2001) Mol Biol Cell 12:1393–1407

    CAS  Google Scholar 

  • Wang H, Lim PJ, Karbowski M, Monteiro MJ (2009) Hum Mol Genet 18:737–752

    CAS  Google Scholar 

  • Weydt P, Pineda VV, Torrence AE, Libby RT, Satterfield TF, Lazarowski ER, Gilbert ML, Morton GJ, Bammler TK, Strand AD, Cui L, Beyer RP, Easley CN, Smith AC, Krainc D, Luquet S, Sweet IR, Schwartz MW, La Spada AR (2006) Cell Metab 4:349–362

    CAS  Google Scholar 

  • Yu ZX, Li SH, Evans J, Pillarisetti A, Li H, Li XJ (2003) J Neurosci 23:2193–2202

    CAS  Google Scholar 

  • Zhang XD, Wang Y, Wang Y, Zhang X, Han R, Wu JC, Liang ZQ, Gu ZL, Han F, Fukunaga K, Qin ZH (2009) Autophagy 26:5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abel Santamaría.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez-De la Cruz, V., Carrillo-Mora, P. & Santamaría, A. Huntington’s disease and mitochondrial alterations: emphasis on experimental models. J Bioenerg Biomembr 42, 207–215 (2010). https://doi.org/10.1007/s10863-010-9289-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-010-9289-4

Keywords

Navigation