Skip to main content
Log in

Effects of glycerol on the thermal dependence of the stability of human erythrocytes

  • Original Paper
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Incubation of human blood in saline solution of 0–36% (v/v) ethanol for 30 min produces lysis or stabilization of erythrocytes depending on the ethanol concentration. Under less elevated concentrations of ethanol, erythrocytes are present in expanded shapes (R state) that present lower stability and suffer lysis with increase in the ethanol concentration. Under more elevated concentrations of ethanol, erythrocytes are present in contracted shapes (T state) that have higher stability and suffer lysis at even more elevated ethanol concentrations. This work evaluated the effects of glycerol (0 to 2.0 M) and temperature (7 to 47°C) on the stability of the R erythrocytes, characterized by the ethanol concentration at the mid-transition point (D 50R ) of the hemolysis curve (D 50R ). D 50R declined sigmoidally with increase in the glycerol concentration or temperature, due to transition of the R to the T state erythrocytes. In 1.5 M glycerol, the erythrocytes stability decreased below 32 but increased above 37°C. The combination of temperature, glycerol and ethanol actions generates a critical value of osmotic pressure below which the R state predominates and above which the T state predominates. At 7°C 1.5 M glycerol decreased the erythrocytes stability against ethanol but increased the erythrocytes stability against hypotonic shock. Those conditions favor the R state, which has a lower stability against ethanol; however, in the absence of ethanol, glycerol determines less water entrance in the erythrocytes, making more difficult its lysis by hypotonicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aversi-Ferreira TA (2004) Efeitos pós-natais do etanol sobre o desenvolvimento do neocórtex de ratos Wistar. Universidade Federal de Uberlândia, Uberlândia

    Google Scholar 

  • Bakaltcheva IB, Odeyale CO, Spargo BJ (1996) Effects of alkanols, alkanediols and glycerol on red blood cell shape and hemolysis. Biochim Biophys Acta 1280:73–80

    Article  Google Scholar 

  • Berger C, Sakowitz OW, Kiening KL, Schwab S (2005) Neurochemical monitoring of glycerol therapy in patients with ischemic brain edema. Stroke 36:e4–e6

    Article  CAS  Google Scholar 

  • Bernardino Neto M (2006) Origem da estabilização de eritrócitos por sorbitol. Universidade Federal de Uberlândia, Uberlândia

    Google Scholar 

  • Betz T, Bakowsky U, Müller MR, Lehr CM, Bernhardt I (2007) Conformational change of membrane proteins leads to shape changes of red blood cells. Bioelectrochemistry 70:122–126

    Article  CAS  Google Scholar 

  • Borowitza LJ, Brown AD (1974) The salt relations of marine and halophilic species of the intracellular green alga Dunaliella: the role of glycerol as a compatible solute. Arch Microbiol 96:37–52

    Article  Google Scholar 

  • Boutron P, Arnaud F (1984) Comparison of the cryoprotection of red blood cells by 1,2-propanediol and glycerol. Cryobiology 21:348–358

    Article  CAS  Google Scholar 

  • Bowlus RD, Somero GN (1979) Solute compatibility with enzyme function and structure: rationales for the selection of osmotic agents and end-products of anaerobic metabolism in marine invertebrates. J Exp Zool 208:137–151

    Article  CAS  Google Scholar 

  • Chi LM, Wu WG (1991) Mechanism of hemolysis of red blood cell mediated by ethanol. Biochim Biophys Acta 1062:46–50

    Article  CAS  Google Scholar 

  • De Loecker R, Gossens W, Van Duppen V, Verwilghen R, De Loecker W (1993) Osmotic effects of dilution on erythrocytes after freezing and thawing in glycerol-containing buffer. Cryobiology 30:279–285

    Article  Google Scholar 

  • Deocaris CC, Shrestha BG, Kraft DC, Yamasaki K, Kaul SC, Taira K, Rattan SIS, Wadhwa R (2006) Geroprotection by glicerol: insights to its mechanisms and clinical potentials. Ann NY Acad Sci 1067:488–492

    Article  CAS  Google Scholar 

  • Finotti CJ (2006) Dependência térmica da osmoestabilização de eritrócitos por glicerol. Universidade Federal de Uberlândia, Uberlândia

    Google Scholar 

  • Fonseca LC, Corrêa NCR, Garrote-Filho MS, Cunha CC, Penha-Silva N (2006) Effects of the solvent composition on the stability of proteins in aqueous solutions. Quim Nova 29:543–548

    CAS  Google Scholar 

  • Gouvêa-e-Silva LF (2006) Caracterização da estabilização de eritrócitos humanos por etanol. Universidade Federal de Uberlândia, Uberlândia

    Google Scholar 

  • Jain NC (1973) Osmotic fragility of erythrocytes of dogs and cats in health and in certain hematologic disorders. Cornell Vet 63:411–423

    CAS  Google Scholar 

  • Jain NC (1986) Schalm’s veterinary hematology. Lea & Febiger, Philadelphia, pp 1221

    Google Scholar 

  • Lang F, Busch GL, Ritter M, Völkl H, Waldegger S, Gulbins E, Häussinger D (1998) Functional significance of cell volume regulatory mechanisms. Physiol Rev 78:247–306

    CAS  Google Scholar 

  • Mazur P, Armitage WJ (1984) Toxic and osmotic effects of glycerol on human granulocytes. Am J Physiol 247:C382–C389

    Google Scholar 

  • Mazur P, Leibo SP, Miller RH (1974) Permeability of the bovine red cell to glycerol in hyperosmotic solutions at various temperatures. J Membr Biol 15:107–136

    Article  CAS  Google Scholar 

  • Mazur P, Miller RH (1976) Permeability of the human erythrocyte to glycerol in 1 and 2 M solutions at 0 or 20 °C. Cryobiology 13:507–522

    Article  CAS  Google Scholar 

  • Morris GJ, Goodrich M, Acton E, Fonseca F (2006) The high viscosity encountered during freezing in glycerol solutions: effects on cryopreservation. Cryobiology 52:323–334

    Article  CAS  Google Scholar 

  • Pellerin-Mendes C, Million L, Marchand-Arvier M, Labrude P, Vigneron C (1997) In vitro study of the effect of trehalose and dextran during freezing of human red blood cells in liquid nitrogen. Cryobiology 35:173–186

    Article  CAS  Google Scholar 

  • Perk K, Frei YF, Hertz A (1964) Osmotic fragility or red blood cells of young and mature domestic and laboratory animals. Am J Vet Res 25:1241–1248

    CAS  Google Scholar 

  • Polge C, Smith AU, Parkes AS (1949) Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature 164:666

    CAS  Google Scholar 

  • Pollard A, Wyn-Jones RG (1979) Enzyme activities in concentrated solution of glycinebetaine and other solutes. Planta 144:291–298

    Article  CAS  Google Scholar 

  • Reis FGF (2007) Influência de glicerol e sorbitol sobre a dependência térmica da estabilização e desestabilização in vitro de eritrócitos humanos. Universidade Federal de Uberlândia, Uberlândia

    Google Scholar 

  • Sakamaki M, Igarashi H, Nishiyama Y, Hagiwara H, Ando J, Chishiki T, Curran BC, Katayama Y (2003) Effect of glycerol on ischemic cerebral edema assessed by magnetic resonance imaging. J Neurol Sci 209:69–74

    Article  CAS  Google Scholar 

  • Santoro MM, Liu Y, Khan SMA, Hou LX, Bolen DW (1992) Increase thermal stability of proteins in the presence of naturally occurring osmolytes. Biochemistry 31:5278–5283

    Article  CAS  Google Scholar 

  • Scott KL, Lecak J, Acker JP (2005) Biopreservation of red blood cells: past, present, and future. Transfus Med Rev 19:127–142

    Article  Google Scholar 

  • Tanford C (1970) Protein denaturation. C. Theoretical models for the mechanism of denaturation. Adv Protein Chem 24:1–95

    Article  CAS  Google Scholar 

  • Wagner CT, Martowicz ML, Livesey SA, Connor J (2002) Biochemical stabilization enhances red blood cell recovery and stability following cryopreservation. Cryobiology 45:153–166

    Article  CAS  Google Scholar 

  • Yancey PH (1985) Organic osmotic effectors in cartilagionous fishes. In Transport Processes, Iono- and Osmoregulation (Gilles R, Gilles-Ballien M, eds), Springer-Verlag, Berlin, pp. 424–436

  • Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Living with water stress: evolution of osmolyte systems. Science 217:1214–1222

    Article  CAS  Google Scholar 

  • Zavodnik IB, Piletskaia TP, Stepuro II (1994) Kinetics of ethanol-induced lysis of human erythrocytes. Biofizika 39:1033–1039

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Penha-Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cunha, C.C., Arvelos, L.R., Costa, J.O. et al. Effects of glycerol on the thermal dependence of the stability of human erythrocytes. J Bioenerg Biomembr 39, 341–347 (2007). https://doi.org/10.1007/s10863-007-9092-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-007-9092-z

Keywords

Navigation