Skip to main content
Log in

ICMRBS founder’s medal 2006: Biological solid-state NMR, methods and applications

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Solid-state NMR (ssNMR) provides increasing possibilities to study structure and dynamics of biomolecular systems. Our group has been interested in developing ssNMR-based approaches that are applicable to biomolecules of increasing molecular size and complexity without the need of specific isotope-labelling. Methodological aspects ranging from spectral assignments to the indirect detection of proton–proton contacts in multi-dimensional ssNMR are discussed and applied to (membrane) protein complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Andrew ER, Bradbury A, Eades RG (1958) Nuclear magnetic resonance spectra from a crystal rotated at high speed. Nature 182:1659

    ADS  Google Scholar 

  • Andronesi OC, Becker S, Seidel K, Heise H, Young HS, Baldus M (2005) Determination of membrane protein structure and dynamics by magic-angle-spinning solid-state NMR spectroscopy. J Am Chem Soc 127:12965–12974

    Google Scholar 

  • Assink RA (1978) Nuclear spin diffusion between polyurethane microphases. Macromolecules 11:1233–1237

    ADS  Google Scholar 

  • Balbach J, Forge V, Lau WS, van Nuland NAJ, Brew K, Dobson CM (1996) Protein folding monitored at individual residues during a two-dimensional NMR Experiment. Science 274:1161–1163

    ADS  Google Scholar 

  • Baldus M (2006) Molecular interactions investigated by multi-dimensional solid-state NMR. Curr Opin Struct Biol 16:618–623

    Google Scholar 

  • Baldus M, Meier BH (1996) Total correlation spectroscopy in the solid state. The use of scalar couplings to determine the through-bond connectivity. J Magn Reson A 121:65–69

    Google Scholar 

  • Baldus M, Tomaselli M, Meier BH, Ernst RR (1994) Broad-band polarization-transfer experiments for rotating solids. Chem Phys Lett 230:329–336

    ADS  Google Scholar 

  • Baldus M, Petkova AT, Herzfeld J, Griffin RG (1998) Cross polarization in the tilted frame: assignment and spectral simplification in heteronuclear spin systems. Mol Phys 95:1197–1207

    ADS  Google Scholar 

  • Barroso S, Richard F, Nicolas-Etheve D, Reversat JL, Bernassau JM, Kitabgi P, Labbe-Jullie C (2000) Identification of residues involved in neurotensin binding and modeling of the agonist binding site in neurotensin receptor 1. J Biol Chem 275:328–336

    Google Scholar 

  • Bennett AE, Ok JH, Griffin RG, Vega S (1992) Chemical-shift correlation spectroscopy in rotating solids—radio frequency-driven dipolar recoupling and longitudinal exchange. J Chem Phys 96:8624–8627

    ADS  Google Scholar 

  • Böckmann A (2006) Structural and dynamic studies of proteins by high-resolution solid-state NMR. Comptes Rendus Chimie 9:381–392

    Google Scholar 

  • Böckmann A, Lange A, Galinier A, Luca S, Giraud N, Heise H, Juy M, Montserret R, Penin F, Baldus M (2003) Solid-state NMR sequential resonance assignments and conformational analysis of the 2*10.4 kDa dimeric form of the bacillus subtilis protein crh. J Biomol NMR 27:323–339

    Google Scholar 

  • Böckmann A, Juy M, Bettler E, Emsley L, Galinier A, Penin F, Lesage A (2005) Water–protein hydrogen exchange in the micro-crystalline protein Crh as observed by solid state NMR spectroscopy. J Biomol NMR 32:195–207

    Google Scholar 

  • Brown SP, Spiess HW (2001) Advanced solid-state NMR methods for the elucidation of structure and dynamics of molecular, macromolecular, and supramolecular systems. Chem Rev 101:4125–4155

    Google Scholar 

  • Castellani F, van Rossum B, Diehl A, Schubert M, Rehbein K, Oschkinat H (2002) Structure of a protein determined by solid-state magic-angle- spinning NMR spectroscopy. Nature 420:98–102

    ADS  Google Scholar 

  • Chan JCC, Oyler NA, Yau WM, Tycko R (2005) Parallel beta-sheets and polar zippers in amyloid fibrils formed by residues 10–39 of the yeast prion protein Ure2p. Biochemistry 44:10669–10680

    Google Scholar 

  • Chevelkov V, Rehbein K, Diehl A, Reif B (2006) Ultrahigh Resolution in Proton Solid-State NMR Spectroscopy at High Levels of Deuteration. Angew Chem Int Ed 45:3878–3881

    Google Scholar 

  • Chimon S, Ishii Y (2005) Capturing Intermediate Structures of Alzheimer’s Aβ (1–40), by Solid-State NMR Spectroscopy. J Am Chem Soc 127:13472–13473

    Google Scholar 

  • Conway KA, Harper JD, Lansbury PT (2000) Fibrils formed in vitro from α-synuclein and two mutant forms linked to Parkinson’s disease are typical amyloid. Biochemistry 39:2552–2563

    Google Scholar 

  • Cordero-Morales JF, Cuello LG, Zhao Y, Jogini V, Cortes DM, Roux B, Perozo E (2006) Molecular determinants of gating at the potassium-channel selectivity filter. Nat Struct Mol Biol 13:311–318

    Google Scholar 

  • Cortes DM, Cuello LG, Perozo E (2001) Molecular Architecture of Full-Length KcsA: Role of Cytoplasmic Domains in Ion Permeation and Activation Gating. J Gen Physiol 117:165–180

    Google Scholar 

  • Creemers AFL, Kiihne S, Bovee-Geurts PHM, DeGrip WJ, Lugtenburg J, de Groot HJM (2002) H-1 and C-13 MAS NMR evidence for pronounced ligand-protein interactions involving the ionone ring of the retinylidene chromophore in rhodopsin. Proc Natl Acad Sci USA 99:9101–9106

    ADS  Google Scholar 

  • Creuzet F, McDermott A, Gebhard R, Vanderhoef K, Spijkerassink MB, Herzfeld J, Lugtenburg J, Levitt MH, Griffin RG (1991) Determination of membrane-protein Structure by Rotational Resonance Nmr—Bacteriorhodopsin. Science 251:783–786

    ADS  Google Scholar 

  • Cross TA, Opella SJ (1983) Protein-structure by solid-state Nmr. J Am Chem Soc 105:306–308

    Google Scholar 

  • de Boer I, Matysik J, Amakawa M, Yagai S, Tamiaki H, Holzwarth AR, de Groot HJM (2003) MAS NMR structure of a microcrystalline Cd-bacteriochlorophyll d analogue. J Am Chem Soc 125:13374–13375

    Google Scholar 

  • de Groot HJM (2000) Solid-state NMR spectroscopy applied to membrane proteins. Curr Opin Struct Biol 10:593–600

    Google Scholar 

  • De Paepe G, Bayro MJ, Lewandowski J, Griffin RG (2006) Broadband homonuclear correlation spectroscopy at high magnetic fields and MAS frequencies. J Am Chem Soc 128:1776–1777

    Google Scholar 

  • Demco DE, Johansson A, Tegenfeldt J (1995) Proton spin-diffusion for spatial heterogeneity and morphology investigations of polymers. Solid State Nucl Magn Reson 4:13–38

    Google Scholar 

  • Detken A, Hardy EH, Ernst M, Kainosho M, Kawakami T, Aimoto S, Meier BH (2001) Methods for sequential resonance assignment in solid, uniformly C-13, N-15 labelled peptides: quantification and application to antamanide. J Biomol NMR 20:203–221

    Google Scholar 

  • Doyle DA, Cabral JM, Pfuetzner RA, Kuo AL, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science 280:69–77

    ADS  Google Scholar 

  • Edzes HT, Samulski ET (1977) Cross relaxation and spin diffusion in proton Nmr of hydrated collagen. Nature 265:521–523

    ADS  Google Scholar 

  • Egorova-Zachernyuk TA, Hollander J, Fraser N, Gast P, Hoff AJ, Cogdell R, de Groot HJM, Baldus M (2001) Heteronuclear 2D-correlations in a uniformly [C-13, N-15] labeled membrane-protein complex at ultra-high magnetic fields. J Biomol NMR 19:243–253

    Google Scholar 

  • Elena B, Emsley L (2005) Powder crystallography by proton solid-state NMR spectroscopy. J Am Chem Soc 127:9140–9146

    Google Scholar 

  • Elena B, Pintacuda G, Mifsud N, Emsley L (2006) Molecular structure determination in powders by NMR crystallography from proton spin diffusion. J Am Chem Soc 128:9555–9560

    Google Scholar 

  • Etzkorn M, Böckmann A, Lange A, Baldus M (2004) Probing molecular interfaces using 2D magic-angle-spinning NMR on protein mixtures with different uniform labeling. J Am Chem Soc 126:14746–14751

    Google Scholar 

  • Etzkorn M, Bockmann A, Penin F, Riedel D, Baldus M (2007a) Characterization of folding intermediates of a domain-swapped protein by solid-state NMR spectroscopy. J Am Chem Soc 129:169–175

    Google Scholar 

  • Etzkorn M, Martell S, Andronesi Ovidiu C, Seidel K, Engelhard M, Baldus M (2007b) Secondary structure, dynamics, and topology of a seven-helix receptor in native membranes, studied by solid-state NMR spectroscopy. Angew Chem Int Ed 46:459–462

    Google Scholar 

  • Ferguson N, Becker J, Tidow H, Tremmel S, Sharpe TD, Krause G, Flinders J, Petrovich M, Berriman J, Oschkinat H, Fersht AR (2006) General structural motifs of amyloid protofilaments. Proc Natl Acad Sci USA 103:16248–16253

    ADS  Google Scholar 

  • Fujiwara T, Todokoro Y, Yanagishita H, Tawarayama M, Kohno T, Wakamatsu K, Akutsu H (2004) Signal assignments and chemical-shift structural analysis of uniformly C-13, N-15-labeled peptide, mastoparan-X, by multidimensional solid-state NMR under magic-angle spinning. J Biomol NMR 28:311–325

    Google Scholar 

  • Ganapathy S, vanGammeren AJ, Hulsbergen FB, deGroot HJM (2007) Probing secondary, tertiary, and quaternary structure along with protein-cofactor interactions for a helical transmembrane protein complex through 1H spin diffusion with MAS NMR Spectroscopy. J Am Chem Soc 129:1504–1505

    Google Scholar 

  • Goedert M (1989) Radioligand-binding assays for study of neurotensin receptors. Meth Enzymol 168:462–481

    Article  Google Scholar 

  • Gordeliy VI, Labahn J, Moukhametzianov R, Efremov R, Granzin J, Schlesinger R, Buldt G, Savopol T, Scheidig AJ, Klare JP, Engelhard M (2002) Molecular basis of transmembrane signalling by sensory rhodopsin II-transducer complex. Nature 419:484–487

    ADS  Google Scholar 

  • Griffin RG (1981) Solid state nuclear magnetic resonance of lipid bilayers. Meth Enzymol 72: 108–174

    Google Scholar 

  • Griffin RG (1998) Dipolar recoupling in MAS spectra of biological solids. Nat Struct Biol 5:508–512

    Google Scholar 

  • Hartmann SR, Hahn EL (1962) Nuclear double resonance in rotating frame. Physical Review 128:2042–2053

    MATH  ADS  Google Scholar 

  • Havlin RH, Tycko R (2005) Probing site-specific conformational distributions in protein folding with solid-state NMR. Proc Natl Acad Sci USA 102:3284–3289

    ADS  Google Scholar 

  • Heise H, Hoyer W, Becker S, Andronesi OC, Riedel D, Baldus M (2005a) Molecular-level secondary structure, polymorphism, and dynamics of full-length {alpha}-synuclein fibrils studied by solid-state NMR. Proc Natl Acad Sci USA 102:15871–15876

    ADS  Google Scholar 

  • Heise H, Luca S, de Groot BL, Grubmuller H, Baldus M (2005b) Probing conformational disorder in neurotensin by two-dimensional solid-state NMR and comparison to molecular dynamics simulations. Biophys J 89:2113–2120

    Google Scholar 

  • Hohwy M, Jakobsen HJ, Eden M, Levitt MH, Nielsen NC (1998) Broadband dipolar recoupling in the nuclear magnetic resonance of rotating solids: a compensated C7 pulse sequence. J Chem Phys 108:2686–2694

    ADS  Google Scholar 

  • Hong M (2006a) Oligomeric structure, dynamics, and orientation of membrane proteins from solid-state NMR. Structure 14:1731–1740

    Google Scholar 

  • Hong M (2006b) Solid-state NMR studies of the structure, dynamics, and assembly of b-sheet membrane peptides and a-helical membrane proteins with antibiotic activities. Acc Chem Res 39:176–183

    Google Scholar 

  • Hong M, Jakes K (1999) Selective and extensive C-13 labeling of a membrane protein for solid-state NMR investigations. J Biomol NMR 14:71–74

    Google Scholar 

  • Hughes CE, Luca S, Baldus M (2004) Radio-frequency-driven polarization transfer without heteronuclear decoupling in rotating solids. Chem Phys Lett 385:435–440

    ADS  Google Scholar 

  • Igumenova TI, Wand AJ, McDermott AE (2004) Assignment of the backbone resonances for microcrystalline ubiquitin. J Am Chem Soc 126:5323–5331

    Google Scholar 

  • Ikura M, Kay LE, Bax A (1990a) A novel-approach for sequential assignment of H-1, C-13, and N-15 spectra of larger proteins—heteronuclear triple-resonance 3-dimensional Nmr-spectroscopy—application to calmodulin. Biochemistry 29:4659–4667

    Google Scholar 

  • Ikura M, Kay LE, Tschudin R, Bax A (1990b) 3-dimensional Noesy-Hmqc spectroscopy of a C-13-labeled protein. J Magn Reson 86:204–209

    Google Scholar 

  • Ishii Y (2001) C-13-C-13 dipolar recoupling under very fast magic angle spinning in solid-state nuclear magnetic resonance: Applications to distance measurements, spectral assignments, and high-throughput secondary-structure determination. J Chem Phys 114:8473–8483

    ADS  Google Scholar 

  • Iwata K, Fujiwara T, Matsuki Y, Akutsu H, Takahashi S, Naiki H, Goto Y (2006a) 3D structure of amyloid protofilaments of β2-microglobulin fragment probed by solid-state NMR. Proc Natl Acad Sci USA 103:18119–18124

    ADS  Google Scholar 

  • Iwata K, Fujiwara T, Matsuki Y, Akutsu H, Takahashi S, Naiki H, Goto Y (2006b) 3D structure of amyloid protofilaments of beta2-microglobulin fragment probed by solid-state NMR. PNAS 103:18119–18124

    ADS  Google Scholar 

  • Jaroniec CP, Tounge BA, Herzfeld J, Griffin RG (2001) Frequency selective heteronuclear dipolar recoupling in rotating solids: Accurate C-13-N-15 distance measurements in uniformly C-13,N-15-labeled peptides. J Am Chem Soc 123:3507–3519

    Google Scholar 

  • Jaroniec CP, MacPhee CE, Bajaj VS, McMahon MT, Dobson CM, Griffin RG (2004) High-resolution molecular structure of a peptide in an amyloid fibril determined by magic angle spinning NMR spectroscopy. Proc Natl Acad Sci USA 101:711–716

    ADS  Google Scholar 

  • Kehlet CT, Sivertsen AC, Bjerring M, Reiss TO, Khaneja N, Glaser SJ, Nielsen NC (2004) Improving solid-state NMR dipolar recoupling by optimal control. J Am Chem Soc 126:10202–10203

    Google Scholar 

  • Klare JP, Bordignon E, Doebber M, Fitter J, Kriegsmann J, Chizhov I, Steinhoff HJ, Engelhard M (2006) Effects of solubilization on the structure and function of the sensory rhodopsin II/transducer complex. J Mol Biol 356:1207–1221

    Google Scholar 

  • Klare JP, Gordeliy VI, Labahn J, Büldt G, Steinhoff H-J, Engelhard M (2004) The archaeal sensory rhodopsin II/transducer complex: a model for transmembrane signal transfer. FEBS Lett 564:219–224

    Google Scholar 

  • Koradi R, Billeter M, Wuthrich K (1996) MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graphics 14:51–55

    Google Scholar 

  • Krabben L, van Rossum BJ, Castellani F, Bocharov E, Schulga AA, Arseniev AS, Weise C, Hucho F, Oschkinat H (2004) Towards structure determination of neurotoxin II bound to nicotinic acetylcholine receptor: a solid-state NMR approach. FEBS Lett 564:319–324

    Google Scholar 

  • Kumashiro KK, Schmidt-Rohr K, Murphy OJ, Ouellette KL, Cramer WA, Thompson LK (1998) A novel tool for probing membrane protein structure: Solid- state NMR with proton spin diffusion and X-nucleus detection. J Am Chem Soc 120:5043–5051

    Google Scholar 

  • Lange A, Luca S, Baldus M (2002) Structural constraints from proton-mediated rare-spin correlation spectroscopy in rotating solids. J Am Chem Soc 124:9704–9705

    Google Scholar 

  • Lange A, Seidel K, Verdier L, Luca S, Baldus M (2003) Analysis of proton-proton transfer dynamics in rotating solids and their use for 3D structure determination. J Am Chem Soc 125:12640–12648

    Google Scholar 

  • Lange A, Becker S, Seidel K, Giller K, Pongs O, Baldus M (2005) A concept for rapid protein-structure determination by solid-state NMR spectroscopy. Angew Chem Int Ed 44:2089–2092

    Google Scholar 

  • Lange A, Giller K, Hornig S, Martin-Eauclaire M-F, Pongs O, Becker S, Baldus M (2006) Toxin-induced conformational changes in a potassium channel revealed by solid-state NMR. Nature 440:959–962

    ADS  Google Scholar 

  • Legros C, Pollmann V, Knaus HG, Farrell AM, Darbon H, Bougis PE, Martin-Eauclaire MF, Pongs O (2000) Grenerating a high affinity scorpion toxin receptor in KcsA- Kv1.3 chimeric potassium channels. J Biol Chem 275:16918–16924

    Google Scholar 

  • Legros C, Schulze C, Garcia ML, Bougis PE, Martin-Eauclaire MF, Pongs O (2002) Engineering-specific pharmacological binding sites for peptidyl inhibitors of potassium channels into KcsA. Biochemistry 41:15369–15375

    Google Scholar 

  • LeMaster DM, Kushlan DM (1996) Dynamical mapping of E-coli thioredoxin via C-13 NMR relaxation analysis. J Am Chem Soc 118:9255–9264

    Google Scholar 

  • Lenaeus MJ, Vamvouka M, Focia PJ, Gross A (2005) Structural basis of TEA blockade in a model potassium channel. Nat Struct Mol Biol 12:454–459

    Google Scholar 

  • Lesage A, Böckmann A (2003) Water–protein interactions in microcrystalline Crh measured by H-1-C-13 solid-state NMR spectroscopy. J Am Chem Soc 125:13336–13337

    Google Scholar 

  • Lesage A, Emsley L, Penin F, Böckmann A (2006) Investigation of dipolar-mediated water–protein interactions in microcrystalline Crh by solid-state NMR spectroscopy. J Am Chem Soc 128:8246–8255

    Google Scholar 

  • Luca S, White JF, Sohal AK, Filippov DV, van Boom JH, Grisshammer R, Baldus M (2003) The conformation of neurotensin bound to its G protein-coupled receptor. Proc Natl Acad Sci USA 100:10706–10711

    ADS  Google Scholar 

  • Luca S, Lange A, Heise H, Baldus M (2005) Investigation of Ligand–receptor interactions by high-resolution solid-state NMR. Arch Pharm (Weinheim) 338:217–228

    Google Scholar 

  • Makin OS, Atkins E, Sikorski P, Johansson J, Serpell LC (2005) Molecular basis for amyloid fibril formation and stability. Proc Natl Acad Sci USA 102:315–320

    ADS  Google Scholar 

  • Marin-Montesinos I, Brouwer DH, Antonioli G, Lai WC, Brinkmann A, Levitt MH (2005) Heteronuclear decoupling interference during symmetry-based homonuclear recoupling in solid-state NMR. J Magn Reson 177:307–317

    ADS  Google Scholar 

  • McDermott AE (2004) Structural and dynamic studies of proteins by solid-state NMR spectroscopy: rapid movement forward. Curr Opin Struct Biol 14:554–561

    Google Scholar 

  • McDermott A, Polenova T, Bockmann A, Zilm KW, Paulsen EK, Martin RW, Montelione GT (2000) Partial NMR assignments for uniformly (C-13, N-15)-enriched BPTI in the solid state. J Biomol NMR 16:209–219

    Google Scholar 

  • McDowell LM, Schaefer J (1996) High-resolution NMR of biological solids. Curr Opin Struct Biol 6:624–629

    Google Scholar 

  • Morris GA, Freeman R (1979) Enhancement of Nuclear Magnetic-Resonance Signals by Polarization Transfer. J Am Chem Soc 101:760–762

    Google Scholar 

  • Moukhametzianov R, Klare JP, Efremov R, Baeken C, Gäppner A, Labahn Jr, Engelhard M, Büldt G, Gordeliy VI (2006) Development of the signal in sensory rhodopsin and its transfer to the cognate transducer. Nature 440:115–119

  • Neal S, Nip AM, Zhang HY, Wishart DS (2003) Rapid and accurate calculation of protein H-1, C-13 and N-15 chemical shifts. J Biomol NMR 26:215–240

    Google Scholar 

  • Nelson R, Sawaya MR, Balbirnie M, Madsen AO, Riekel C, Grothe R, Eisenberg D (2005) Structure of the cross-β spine of amyloid-like fibrils. Nature 435:773–778

    ADS  Google Scholar 

  • Nomura K, Takegoshi K, Terao T, Uchida K, Kainosho M (1999) Determination of the complete structure of a uniformly labeled molecule by rotational resonance solid-state NMR in the tilted rotating frame. J Am Chem Soc 121:4064–4065

    Google Scholar 

  • Opella SJ, Marassi FM (2004) Structure determination of membrane proteins by NMR spectroscopy. Chem Rev 104:3587–3606

    Google Scholar 

  • Patel AB, Crocker E, Eilers M, Hirshfeld A, Sheves M, Smith SO (2004) Coupling of retinal isomerization to the activation of rhodopsin. Proc Natl Acad Sci USA 101:10048–10053

    ADS  Google Scholar 

  • Pauli J, Baldus M, van Rossum B, de Groot H, Oschkinat H (2001) Backbone and side-chain C-13 and N-15 signal assignments of the alpha-spectrin SH3 domain by magic angle spinning solid-state NMR at 17.6 tesla. Chembiochem 2:272–281

    Google Scholar 

  • Pauli J, van Rossum B, Forster H, de Groot HJM, Oschkinat H (2000) Sample optimization and identification of signal patterns of amino acid side chains in 2D RFDR spectra of the alpha-spectrin SH3 domain. J Magn Reson 143:411–416

    ADS  Google Scholar 

  • Paulson EK, Morcombe CR, Gaponenko V, Dancheck B, Byrd RA, Zilm KW (2003) High-sensitivity observation of dipolar exchange and NOEs between exchangeable protons in proteins by 3D solid-state NMR spectroscopy. J Am Chem Soc 125:14222–14223

    Google Scholar 

  • Petkova AT, Ishii Y, Balbach JJ, Antzutkin ON, Leapman RD, Delaglio F, Tycko R (2002a) A structural model for Alzheimer’s β-amyloid fibrils based on experimental constraints from solid state NMR. Proc Natl Acad Sci U S A 99:16742–16747

    ADS  Google Scholar 

  • Petkova AT, Ishii Y, Balbach JJ, Antzutkin ON, Leapman RD, Delaglio F, Tycko R (2002b) A structural model for Alzheimer’s beta-amyloid fibrils based on experimental constraints from solid state NMR. Proc Natl Acad Sci 99:16742–16747

    ADS  Google Scholar 

  • Petkova AT, Buntkowsky G, Dyda F, Leapman RD, Yau WM, Tycko R (2004) Solid state NMR reveals a pH-dependent antiparallel β-sheet registry in fibrils formed by a β-amyloid peptide. J Mol Biol 335:247–260

    Google Scholar 

  • Petkova AT, Leapman RD, Guo Z, Yau W-M, Mattson MP, Tycko R (2005) Self-propagating, molecular-level polymorphism in Alzheimer’s β-amyloid fibrils. Science 307:262–265

    ADS  Google Scholar 

  • Petkova AT, Yau WM, Tycko R (2006) Experimental constraints on quaternary structure in Alzheimer’s β-amyloid fibrils. Biochemistry 45:498–512

    Google Scholar 

  • Pines A, Gibby MG, Waugh JS (1973) Proton-enhanced Nmr of dilute spins in solids. J Chem Phys 59:569–590

    ADS  Google Scholar 

  • Raleigh DP, Levitt MH, Griffin RG (1988) Rotational resonance in solid-state Nmr. Chem Phys Lett 146:71–76

    ADS  Google Scholar 

  • Reif B, Jaroniec CP, Rienstra CM, Hohwy M, Griffin RG (2001) H-1-H-1 MAS correlation spectroscopy and distance measurements in a deuterated peptide. J Magn Reson 151:320–327

    ADS  Google Scholar 

  • Riedel K, Herbst C, Hafner S, Leppert J, Ohlenschlaeger O, Swanson MS, Gorlach M, Ramachandran R (2006) Constraints on the structure of (CUG)(97) RNA from magic-angle-spinning solid-state NMR spectroscopy. Angew Chem Int Ed 45:5620–5623

    Google Scholar 

  • Ritter C, Maddelein M-L, Siemer AB, Luhrs T, Ernst M, Meier BH, Saupe SJ, Riek R (2005) Correlation of structural elements and infectivity of the HET-s prion. Nature 435:844–848

    ADS  Google Scholar 

  • Schrempf H, Schmidt O, Kummerlen R, Hinnah S, Muller D, Betzler M, Steinkamp T, Wagner R (1995) A prokaryotic potassium-ion channel with 2 predicted transmembrane segments from Streptomyces-lividans. EMBO J 14:5170–5178

    Google Scholar 

  • Seelig J (1977) Deuterium magnetic-resonance—theory and application to lipid-membranes. Q Rev Biophys 10:353–418

    Article  Google Scholar 

  • Seidel K, Lange A, Becker S, Hughes CE, Heise H, Baldus M (2004) Protein solid-state NMR resonance assignments from (13C,13C) correlation spectroscopy. Phys Chem Chem Phys 6:5090–5093

    Google Scholar 

  • Seidel K, Etzkorn M, Heise H, Becker S, Baldus M (2005a) High-resolution solid-state NMR studies on uniformly C-13,N-15—labeled ubiquitin. Chembiochem 6:1638–1647

    Google Scholar 

  • Seidel K, Etzkorn M, Sonnenberg L, Griesinger C, Sebald A, Baldus M (2005b) Studying 3D structure and dynamics by high-resolution solid-state NMR: application to L-tyrosine-ethylester. J Phys Chem A 109:2436–2442

    Google Scholar 

  • Serpell LC, Berriman J, Jakes R, Goedert M, Crowther RA (2000) Fiber diffraction of synthetic α-synuclein filaments shows amyloid-like cross-β conformation. Proc Natl Acad Sci USA 97:4897–4902

    ADS  Google Scholar 

  • Shewmaker F, Wickner RB, Tycko R (2006) Amyloid of the prion domain of Sup35p has an in-register parallel β-sheet structure. Proc Natl Acad Sci USA 103:19754–19759

    ADS  Google Scholar 

  • Siemer AB, Arnold AA, Ritter C, Westfeld T, Ernst M, Riek R, Meier BH (2006) Observation of highly flexible residues in amyloid fibrils of the HET-s prion. J Am Chem Soc 128:13224–13228

    Google Scholar 

  • Sonnenberg L, Luca S, Baldus M (2004) Multiple-spin analysis of (13C,13C) chemical-shift selective transfer in uniformly labeled biomolecules. J Magn Reson 166:100–110

    ADS  Google Scholar 

  • Spronk CAEM, Nabuurs SB, Krieger E, Vriend G, Vuister GW (2004) Validation of protein structures derived by NMR spectroscopy. Prog Nucl Magn Reson Spectrosc 45:315–337

    Google Scholar 

  • Straus SK, Bremi T, Ernst RR (1998) Experiments and strategies for the assignment of fully C-13/N-15-labelled polypeptides by solid state NMR. J Biomol NMR 12:39–50

    Google Scholar 

  • Takamori S, Holt M, Stenius K, Lemke EA, Gronborg M, Riedel D, Urlaub H, Schenck S, Brugger B, Ringler P, Muller SA, Rammner B, Grater F, Hub JS, De Groot BL, Mieskes G, Moriyama Y, Klingauf J, Grubmuller H, Heuser J, Wieland F, Jahn R (2006) Molecular anatomy of a trafficking organelle. Cell 127:831–846

    Google Scholar 

  • Takegoshi K, Nomura K, Terao T (1995) Rotational resonance in the tilted rotating-frame. Chem Phys Lett 232:424–428

    ADS  Google Scholar 

  • Tanaka K, Masu M, Nakanishi S (1990) Structure and functional expression of the cloned rat neurotensin receptor. Neuron 4:847–854

    Google Scholar 

  • Torchia DA (1984) Solid-state Nmr-studies of protein internal dynamics. Annu Rev Biophys Bioeng 13:125–144

    Google Scholar 

  • Tycko R (2004) Progress towards a molecular-level structural understanding of amyloid fibrils. Curr Opin Struct Biol 14:96–103

    Google Scholar 

  • Tycko R (2006) Molecular structure of amyloid fibrils: insights from solid-state NMR. Q Rev Biophys 39:1–55

    Google Scholar 

  • vanderWel PCA, Hu KN, Lewandowski J, Griffin RG (2006) Dynamic nuclear polarization of amyloidogenic peptide nanocrystals: GNNQQNY, a core segment of the yeast prion protein Sup35p. J Am Chem Soc 128:10840–10846

    Google Scholar 

  • Verel R, Baldus M, Nijman M, van Os JWM, Meier BH (1997) Adiabatic homonuclear polarization transfer in magic-angle-spinning solid-state NMR. Chem Phys Lett 280:31–39

    ADS  Google Scholar 

  • Verel R, Baldus M, Ernst M, Meier BH (1998) A homonuclear spin-pair filter for solid-state NMR based on adiabatic-passage techniques. Chem Phys Lett 287:421–428

    ADS  Google Scholar 

  • Vuister GW, Kim SJ, Wu C, Bax A (1994) 2d and 3d NMR-study of phenylalanine residues in proteins by reverse isotopic labeling. J Am Chem Soc 116:9206–9210

    Google Scholar 

  • Watts A (1999) NMR of drugs and ligands bound to membrane receptors. Curr Opin Biotechnol 10:48–53

    Google Scholar 

  • Watts A (2005) Solid-state NMR in drug design and discovery for membrane-embedded targets. Nat Rev Drug Discov 4:555–568

    Google Scholar 

  • Wegener A-A, Klare JP, Engelhard M, Steinhoff H-J (2001) Structural insights into the early steps of receptor-transducer signal transfer in archaeal phototaxis. EMBO J 20:5312–5319

    Google Scholar 

  • Y Li, Berthold DA, Frericks HL, Gennis RB, Rienstra CM (2007) Partial 13C and 15N chemical-shift assignments of the disulfide-bond-forming enzyme DsbB by 3D magic-angle spinning NMR spectroscopy. ChemBioChem 8:434–442

    MATH  Google Scholar 

  • Yi H, Cao ZJ, Yin SJ, Dai C, Wu YL, Li WX (2007) Interaction simulation of hERG K+ channel with its specific BeKm-1 peptide: insights into the selectivity of molecular recognition. J Proteome Res 6:611–620

    Google Scholar 

  • Zech SG, Wand AJ, McDermott AE (2005) Protein structure determination by high-resolution solid-state NMR spectroscopy: application to microcrystalline ubiquitin. J Am Chem Soc 127:8618–8626

    Google Scholar 

  • Zhou Y, MacKinnon R (2003) The occupancy of IONS in the K+ selectivity filter: charge balance and coupling of ion binding to a protein conformational change underlie high conduction rates. J Mol Biol 333:965–975

    Google Scholar 

  • Zhou M, Morais-Cabral JH, Mann S, MacKinnon R (2001a) Potassium channel receptor site for the inactivation gate and quaternary amine inhibitors. Nature 411:657–661

    ADS  Google Scholar 

  • Zhou YF, Morais-Cabral JH, Kaufman A, MacKinnon R (2001b) Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 angstrom resolution. Nature 414:43–48

    ADS  Google Scholar 

Download references

Acknowledgments

Work described in this review was supported through grants from the Deutsche Forschungsgemeinschaft (DFG), the Fonds der Chemischen Industrie (FCI), the Volkswagen foundation, the Humboldt foundation, the EU and the Max-Planck-Gesellschaft. I thank all group members, our colleagues and collaborators over the past years who substantially contributed to work described here. Most experiments described here were conducted in the department of NMR-based Structural Biology headed by C. Griesinger. I am indebted to the International Council on Magnetic in Biological Systems for awarding me the founder’s medal 2006. While this article exclusively discussed results obtained in our group, progress in the field was only possible due to the outstanding contributions of many other groups and colleagues.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Baldus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baldus, M. ICMRBS founder’s medal 2006: Biological solid-state NMR, methods and applications. J Biomol NMR 39, 73–86 (2007). https://doi.org/10.1007/s10858-007-9177-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-007-9177-3

Keywords

Navigation