Skip to main content

Advertisement

Log in

Electrochemical behavior and corrosion resistance of Ti–15Mo alloy in naturally-aerated solutions, containing chloride and fluoride ions

  • Biomaterials Synthesis and Characterization
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The electrochemical behavior and corrosion resistance of Ti–15Mo alloy to applications as biomaterials in solutions 0.15 mol L−1 Ringer, 0.15 mol L−1 Ringer plus 0.036 mol L−1 NaF and 0.036 mol L−1 NaF (containing 1,500 ppm of fluoride ions, F) were investigated using open-circuit potential, cyclic voltammetry, and electrochemical impedance spectroscopy techniques, X-ray photoelectron spectroscopy and scanning electron microscope. Corrosion resistance and electrochemical stability of the Ti–15Mo alloy decreased in solutions containing F ions. In all cases, there were formation and growth of TiO2 and MoO3 (a protector film), not being observed pitting corrosion, which might enable Ti–15Mo alloys to be used as biomedical implant, at least in the studied conditions, since the electrochemical stability and corrosion resistance of the passive films formed are necessary conditions for osseointegration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kumar S, Narayanan TSNS, Kumar SS. Influence of fluoride ion on the electrochemical behaviour of β-Ti alloy for dental implant application. Corros Sci. 2010;52:1721–7.

    Article  Google Scholar 

  2. Nakagawa M, Matsuya S, Udoh K. Corrosion behavior of pure titanium and titanium alloys in fluoride-containing solutions. Dent Mater J. 2001;20:305–14.

    Article  Google Scholar 

  3. Kumar S, Narayanan TSNS. Corrosion behavior of Ti–15Mo alloy for dental implant applications. J Dent. 2008;36:500–7.

    Article  Google Scholar 

  4. Oliveira NTC, Guastaldi AC. Electrochemical stability and corrosion resistance of Ti–Mo alloys for biomedical applications. Acta Biomater. 2009;5:399–405.

    Article  Google Scholar 

  5. Stookey GK. Critical evaluation of the composition and use of topical fluorides. J Dent Res. 1990;69:805–12.

    Article  Google Scholar 

  6. Huang HH. Effects of fluoride and albumin concentration on the corrosion behavior of Ti–6Al–4V alloy. Biomaterials. 2003;24:275–82.

    Article  Google Scholar 

  7. Nakagawa M, Matono Y, Matsuya S, Udoh K, Ishikawa K. The effect of Pt and Pd alloying additions on the corrosion behavior of titanium in fluoride containing environments. Biomaterials. 2005;26:2239–46.

    Article  Google Scholar 

  8. Al-Mayouf AM, Al-Swayih AA, Al-Mobarak NA, Al-Jabab AS. Corrosion behavior of a new titanium alloy for dental implant applications in fluoride media. Mater Chem Phys. 2004;86:320–9.

    Article  Google Scholar 

  9. Tavares AMG, Fernandes BS, Souza SA, Batista WW, Cunha FGC, Landers R, Macedo MCSS. The addition of Si to the Ti–35Nb alloy and its effect on the corrosion resistance, when applied to biomedical materials. J Alloys Compd. 2014;591:91–9.

    Article  Google Scholar 

  10. Martins DQ, Souza MEP, Souza SA, Andrade DC, Freire CMA, Caram R. Solute segregation and its influence on the microstructure and electrochemical behavior of Ti–Nb–Zr alloys. J Alloys Compd. 2009;478:111–6.

    Article  Google Scholar 

  11. Afonso CRM, Aleixo GT, Ramirez AJ, Caram R. Influence of cooling rate on microstructure of Ti–Nb alloy for orthopedic implants. Mater Sci Eng C. 2007;27:908–13.

    Article  Google Scholar 

  12. Eisenbarth E, Velten D, Müller M, Thull R, Breme J. Biocompatibility of β-stabilizing elements of titanium alloys. Biomaterials. 2004;25:5705–13.

    Article  Google Scholar 

  13. Mareci D, Chelariu R, Gordin DM, Ungureanu G, Gloriant T. Comparative corrosion study of Ti–Ta alloys for dental applications. Acta Biomater. 2009;5:3625–39.

    Article  Google Scholar 

  14. Gonzalez JEG, Mirza-Rosca JC. Study of the corrosion behavior of titanium and some of its alloys for biomedical and dental implant applications. J Electroanal Chem. 1999;471:109–15.

    Article  Google Scholar 

  15. Robin A, Meirelis JP. Influence of fluoride concentration and pH on corrosion behavior of titanium in artificial saliva. J Appl Electrochem. 2007;37:511–7.

    Article  Google Scholar 

  16. Oliveira NTC, Aleixo G, Caram R, Guastaldi AC. Development of Ti–Mo alloys for biomedical applications: microstructure and electrochemical characterization. Mater Sci Eng A. 2007;727:452–3.

    Google Scholar 

  17. Oliveira NTC, Guastaldi AC, Piazza S, Sunseri C. Photo-electrochemical investigation of anodic oxide films on cast Ti–Mo alloys. I. Anodic behaviour and effect of alloy composition. Electrochim Acta. 2009;54:1395–402.

    Article  Google Scholar 

  18. Oliveira NTC, Guastaldi AC. Electrochemical behaviour of Ti–Mo alloys applied as biomaterial. Corros Sci. 2008;50:938–45.

    Article  Google Scholar 

  19. Alves APR, Santana FA, Rosa LAA, Cursino AS, Codaro EN. Astudy on corrosion resistance of the Ti–10Mo experimental alloy after different processing methods. Mater Sci Eng C. 2004;24:693–6.

    Article  Google Scholar 

  20. Al-Mayouf AM, Al-Swayih AA, Al-Mobarak NA, Al-Jabab AS. The effect of fluoride on the electrochemical behavior of Ti and some of its alloys for dental applications. Mater Corros-Werkstoffe Und Korros. 2004;55:524–30.

    Article  Google Scholar 

  21. Niinomi M. Mechanical properties of biomedical titanium alloys. Mater Sci Eng A. 1998;243:231–6.

    Article  Google Scholar 

  22. Leach JSL, Pearson BR. The conditions for incorporation of electrolyte ions into anodic oxides. Electrochim Acta. 1984;29:1271–82.

    Article  Google Scholar 

  23. Oliveira NTC, Biaggio SR, Piazza S, Sunseri C, Di Quarto F. Photo-electrochemical and impedance investigation of passive layers grown anodically on titanium alloys. Electrochim Acta. 2004;49:4563–76.

    Article  Google Scholar 

  24. Zhang X. The pitting behavior of Al-3103 implanted with molybdenum. Corros Sci. 2001;43:85–97.

    Article  Google Scholar 

  25. Lavos-Valereto IC, Wolynec S, Ramires I, Guastaldi AC, Costa I. Electrochemical impedance spectroscopy characterization of passive film formed on implant Ti–6Al–7Nb alloy in Hank’s solution. J Mate Sci Mater Med. 2004;15:55–9.

    Article  Google Scholar 

  26. Milosev I, Metikos-Hukovic M, Strehblow HH. Passive film on orthopaedic TiAlV alloy formed in physiological solution investigated by X-ray photoelectron spectroscopy. Biomaterials. 2000;21:2103–13.

    Article  Google Scholar 

Download references

Acknowledgments

The authors express their sincere acknowledgements to CNPQ for the scholarship and grant for making this work possible, and Isabela Mascia Silveira for the English revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. C. Guastaldi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, A.V., Oliveira, N.T.C., dos Santos, M.L. et al. Electrochemical behavior and corrosion resistance of Ti–15Mo alloy in naturally-aerated solutions, containing chloride and fluoride ions. J Mater Sci: Mater Med 26, 1 (2015). https://doi.org/10.1007/s10856-014-5323-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-014-5323-0

Keywords

Navigation