Skip to main content
Log in

Hyaluronic acid stimulates the formation of calcium phosphate on CoCrMo alloy in simulated physiological solution

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The behaviour of CoCrMo alloy has been studied in two simulated physiological solutions—NaCl and Hanks’ solutions—each containing the sodium salt of hyaluronic acid. Hyaluronic acid is a component of synovial joint fluid, so the behaviour of orthopaedic alloys in its presence needs to be assessed. Electrochemical methods, X-ray photoelectron spectroscopy and scanning electron microscopy have been used to analyse the composition, thickness and morphology of any layers formed on the alloy. The addition of hyaluronic acid shifts the corrosion potential and increases the value of polarization resistance. The presence of hyaluronic acid in simulated Hanks’ physiological solution stimulates the formation of a calcium phosphate layer, opening up the possibility for tailoring the surface properties of CoCrMo alloy. The viability of human osteoblast-like was determined using the Alamar® Blue Assay, while the osteogenic activity was evaluated by alkaline phosphatase activity. The presence of hyaluronic acid affects the alkaline phosphatase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Kasemo B. Biological surface science. Surface Sci. 2002;500:656–77.

    Article  CAS  Google Scholar 

  2. Puleo DA, Nanci A. Understanding and controlling the bone-implant interface. Biomaterials. 1999;20:2311–21.

    Article  CAS  Google Scholar 

  3. Xu T, Zhan N, Nichols HL, Shi D, Wen X. Modification of nanostructured materials for biomedical apllications. Mater Sci Eng C. 2007;27:579–94.

    Article  CAS  Google Scholar 

  4. Paital SR, Dahotre NB. Calcium phosphate coatings for bio-implant applications: materials, performance factors and methodologies. Mater Sci Eng R. 2009;66:1–70.

    Article  Google Scholar 

  5. Igual Muňoz A, Mischler S. Interactive effects of albumin and phosphate ions on the corrosion of CoCrMo implant alloy. J Electrochem Soc 2007;154: C562-70.

  6. Hodgson AWE, Kurz S, Virtanen S, Fervel V, Olsson C-OA, Mischler S. Passive and transpassive behaviour of CoCrMo in simulated biological solutions. Electrochim Acta. 2004;49:2167–78.

    Article  CAS  Google Scholar 

  7. Li Y-S, Wang K, He P, Huang BX, Kovacs P. Surface-enhanced Raman spectroelectrochemical studies of corrosion films on implant Co–Cr–Mo alloy in biosimulating solutions. J Raman Spectrosc. 1999;30:97–103.

    Article  CAS  Google Scholar 

  8. Milošev I, Strehblow HH. The composition of the surface passive film formed on CoCrMo alloy in simulated physiological solution. Electrochim Acta. 2003;48:2767–74.

    Article  Google Scholar 

  9. Milošev I. Surface treatments for biomedical applications. In: Djokic Stojan S, editor. Modern aspects of electrochemistry, vol 55. Springer; 2012. p. 1–72.

  10. Hanawa T, Hiromoto S, Asami K. Characterization of the surface oxide film of a Co-Cr-Mo alloy after being located in quasi-biological environments using XPS. Appl Surf Sci. 2001;183:68–75.

    Article  CAS  Google Scholar 

  11. Contu F, Elsener B, Böhni H. Characterization of implant materials in fetal bovine serum and sodium sulfate by electrochemical impedance spectroscopy. I Mechanically polished samples. J Biomed Mater Res. 2002;62:412–21.

    Article  CAS  Google Scholar 

  12. Hiromoto S, Noda K, Hanawa T. Development of electrolytic cell with cell-culture for metallic biomaterials. Corrosion Sci. 2002;44:955–65.

    Article  CAS  Google Scholar 

  13. Cheng X, et al. Corrosion behaviour of titanium in the presence of calcium phosphate and serum proteins. Biomaterials. 2005;26:7350–6.

    Article  CAS  Google Scholar 

  14. Milošev I. The effect of biomolecules on the behaviour of CoCrMo alloy in various simulated physiological solutions. Electrochim Acta. 2012;78:259–73.

    Article  Google Scholar 

  15. Yadav KL, Brown PW. Formation of hydroxyapatite in water, Hank’s solution, and serum at physiological temperature. J Biomed Mater Res A. 2003;65A:158–63.

    Article  CAS  Google Scholar 

  16. Day AJ, Sheenan JK. Hyaluronan: polysaccharide chaos to protein organisation. Curr Opin Chem Biol. 2001;11:617–22.

    CAS  Google Scholar 

  17. Barbucci R, Lamponi S, Borzacchiello A, Ambrosio L, Fini M, Torricelli P, Giardino R. Hyaluronic acid hydrogel in the treatment of osteoarthritis. Biomaterials. 2002;23:4503–13.

    Article  CAS  Google Scholar 

  18. Gribbon P, Heng BC, Hardingham TE. The analysis of intermolecular interactions in concnetrated hyaluronan solutions suggest no evidence for chain–chain association. Biochem J. 2000;350:329–35.

    Article  CAS  Google Scholar 

  19. Sheehan JK, Atkins EDT. X-ray fibre diffraction study of conformational changes in hyaluronate induced in the presence of sodium, potassium and calcium cations. Int J Biol Macromol. 1983;5:215–21.

    Article  CAS  Google Scholar 

  20. Collis JJ, Embery G. Adsorption of glycosaminoglycans to commercially pure titanium. Biomaterials. 1992;13:548–52.

    Article  CAS  Google Scholar 

  21. Ellingsen JE. A study on the mechanism of protein adsorption to TiO2. Biomaterials. 1991;12:593–6.

    Article  CAS  Google Scholar 

  22. Hanawa T, Ota M. Calcium phosphate naturally formed on titanium in electrolyte solution. Biomaterials 1991;12:767-14.

    Google Scholar 

  23. Briggs D, Rivière JC. Spectral interpretation. In: Briggs D, Seah MP, editors. Practical surface analysis by XPS and AES. New York: Chichester; 1990.

    Google Scholar 

  24. Seah MP. Summary of ISO/TC 201 standard: iSO 14701:–surface chemical analysis–X-ray photoelectron spectroscopy–measurement of silicon oxide thickness. Surf Interface Anal. 2012;44:876–8.

    Article  CAS  Google Scholar 

  25. Pan J, Thierry D, Leygraf C. Electrochemical impedance spectroscopy study of the passive film on titanium for implant applications. Electrochim Acta. 1996;41:1143–53.

    Article  CAS  Google Scholar 

  26. Aziz-Kerrzo, Conroy KG, Fenelon AM, Farrell ST, Breslin CB. Electrochemical studies on the stability and corrosion resistance of titanium-based implant materials. Biomaterials 2001;21:1531-9.

  27. Souto RA, Laz MM, Reis RL. Degradation characteristics of hydroxyapatite coatings on orthopedic TiAlV in simulated physiological media investigated by electrochemical impedance spectroscopy. Biomaterials. 2003;24:4213–21.

    Article  CAS  Google Scholar 

  28. Hodgson AWE, Mueller Y, Forster D, Virtanen S. Electrochemical characterisation of passive films on Ti alloys under simulated biological conditions. Electrochim Acta. 2002;47:1913–23.

    Article  CAS  Google Scholar 

  29. Tamilselvi S, Raman V, Rajendran N. Corrosion behaviour of Ti-6Al-7Nb and Ti-6Al-4 V ELI alloys in the simulated body fluid solution by electrochemical impedance spectroscopy. Electrochim Acta. 2006;52:839–46.

    Article  CAS  Google Scholar 

  30. Metikoš-Huković M, Pilić Z, Babić R, Omanović D. Influence of alloying elements on the corrosion stability of CoCrMo implant alloy in Hank’s solution. Acta Biomater. 2006;2:693–700.

    Article  Google Scholar 

  31. Milošev I, Blejan D, Varvara S, Muresan LM. Effect of anodic oxidation on the corrosion behaviour of Ti-based materials in simulated physiological solution. submitted.

  32. Wagner CD, Naumkin AV, Kraut-Vass A, Allison JW, Powell CJ, Rumble JR Jr. NIST X-ray photoelectron spectroscopy database, NIST standard reference database 20, Version 3.5, Data compiled and evaluated. http://srdata.nist.gov/xps/.

  33. Tsutsumi Y, Nishimura D, Doi H, Nomura H, Hanawa T. Difference in surface reactions between titanium and zirconium in Hank’s solution to elucidate mechanism of calcium phosphate formation on titanium using XPS and cathodic polarization. Mat Sci Eng C 2009; 29:1702-8.

    Google Scholar 

  34. Frauchiger L, Taborelli M, Aronsson B-O, Descouts P. Ion adsorption on titanium surfaces exposed to a physiological solution. Appl Surf Sci. 1999;143:67–77.

    Article  CAS  Google Scholar 

  35. Milošev I, Jovanović Ž, Bajat JB, Jančić-Heinemann J, Mišković-Stanković VB. Surface analysis and electrochemical behaviour of aluminium pretreated by vinyltriethoxysilane films in mild NaCl solution. J Electrochem Soc. 2012;159:C303–11.

    Google Scholar 

  36. Feng B, Chen J, Zhang X. Interaction of calcium and phosphate in apatite coating on titanium with serum albumin. Biomaterials. 2002;23:2499–507.

    Article  CAS  Google Scholar 

  37. Hughes Wassell DT, Graham E. Adsorption of bovine serum albumin on to titanium powder. Biomaterials 1196;17:859-64.

  38. Steinberg D, Klinger A, Kohavi D, Sela MN. Adsorption of human salivary proteins to tittanium powder I: adsortpion of human salivary albumin. Biomaterials. 1995;16:1339–43.

    Article  CAS  Google Scholar 

  39. Hay DI, Moreno EC. Differential adsorption and chemical affinities of protein for apatitic surfaces. J Dent Res. 1979;58:930–40.

    Article  CAS  Google Scholar 

  40. Sheenan JK, Brass A, Almond A. The conformations of hyaluronan in aqueous solution: comparison of theory and experiment. Biochem Soc Trans. 1999;27:121–4.

    Google Scholar 

  41. Almond A, Brass A, Sheenan JK. Deducing polymeric structure from aqueous molecular dynamics simulations of oligosaccharides: predictions from simulations of hyaluronan tetrasacccharides compared with hydrodynamic and X-ray fibre diffraction data. J Mol Biol. 1998;284:1425–37.

    Article  CAS  Google Scholar 

  42. Gu Z, Cai Q, He Y, Fu T, Li F. Degradation of hyaluronan by an electrochemical process. Carbohydr Polym. 2010;82:521–3.

    Article  CAS  Google Scholar 

  43. Taylor KR, Trowbridge JM, Rudisill JA, Termeer CC, Simon JC, Galo RL. Hyaluronan fragments stimulate endothelial recognition of injury through TLR4. J Biol Chem. 2004;279:17079–84.

    Article  CAS  Google Scholar 

  44. Scheibner S, Lutz MA, Boodoo S, Fenton MJ, Powell JD, Horton MR. Hyaluronan fragments act as an endogenous danger signal by engaging TLR2. J Immun. 2006;177:1272–81.

    CAS  Google Scholar 

  45. West DC, Hampson IN, Arnold F, Kumar S. Angiogenesis induced by degradation productts of hyaluronic acid. Science. 1985;228:1324–6.

    Article  CAS  Google Scholar 

  46. Bhakta G, Rai B, Lim ZXH, Hui JH, Stein GS, van Wijnen AJ, Nurcombe V, Prestwich GD, Cool SM. Hyluronic acid-based hydrogels functionalized with heparin that support controlled release of bioactive BMP-2. Biomaterials. 2012;33:6113–22.

    Article  CAS  Google Scholar 

  47. Huang Y, Luo Q, Li X, Zhang F, Zhao S. Fabrication and in vitro evaluation of the collagen/hyaluronic acid PEM coating crosslinked with functionalized RGD peptide on titanium. Acta Biomateriala. 2012;8:866–77.

    Article  CAS  Google Scholar 

  48. Chua P-H, Neoh K-G, Kang E-T, Wang W. Surface functionalization of titanium with hyaluronic acid/chitosan polelectrolyte multilayers and RGD for promoting osteoblast functions and inhibiting bacterial adhesion. Biomaterials. 2008;29:1412–21.

    Article  CAS  Google Scholar 

  49. Park JK, Shim JH, Kang KS, Yeom J, Jung HS, Kim JY, Lee KH, Kim TH, Kim SY, Cho DW, Hahn SK. Solid free-form fabrication of tissue engineering scaffolds with a poly(lactic-co-glycolic) grafted hyaluronic acid conjugate encapsulating an intact bone morphogenetic protein-2/poly(ethylene glycol) complex. Adv Funct Mater. 2011;21:2906–12.

    Article  CAS  Google Scholar 

  50. Jiao Y, Liu Z, Shao X, Zhou C. Protein adsorption and cytocompatibility of poly(l-lactic acid) surfaces modified with biomacromolecules. J Appl Polymer Sci. 2012;125:E501–10.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Mojca Seručnik, BSc, and Gregor Žerjav, BSc, for valuable experimental work, Gregor Kapun, BSc, of the National Institute of Chemistry for expertise in the FE-SEM analysis, Dr. Janez Kovač for valuable comments on XPS measurements, and dr. Antonija Lesar for fruitful discussions. Human osteosarcoma (HOS), a human osteoblast-like cell line, was kindly donated by prof. Janja Marc, Faculty of Pharmacy, University of Ljubljana. Financial support by the Slovenian Research Agency is acknowledged (Grants No. J1-2243 and J1-4136).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid Milošev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milošev, I., Hmeljak, J. & Cör, A. Hyaluronic acid stimulates the formation of calcium phosphate on CoCrMo alloy in simulated physiological solution. J Mater Sci: Mater Med 24, 555–571 (2013). https://doi.org/10.1007/s10856-012-4827-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4827-8

Keywords

Navigation