Skip to main content

Advertisement

Log in

Fabrication of CaO–NaO–SiO2/TiO2 scaffolds for surgical applications

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

A series of titanium (Ti) based glasses were formulated (0.62 SiO2–0.14 Na2O–0.24 CaO, with 0.05 mol% TiO2 substitutions for SiO2) to develop glass/ceramic scaffolds for bone augmentation. Glasses were initially characterised using X-ray diffraction (XRD) and particle size analysis, where the starting materials were amorphous with 4.5 μm particles. Hot stage microscopy and high temperature XRD were used to determine the sintering temperature (~700 °C) and any crystalline phases present in this region (Na2Ca3Si6O16, combeite and quartz). Hardness testing revealed that the Ti-free control (ScC—2.4 GPa) had a significantly lower hardness than the Ti-containing materials (Sc1 and Sc2 ~6.6 GPa). Optical microscopy determined pore sizes ranging from 544 to 955 μm. X-ray microtomography calculated porosity from 87 to 93 % and surface area measurements ranging from 2.5 to 3.3 SA/mm3. Cytotoxicity testing (using mesenchymal stem cells) revealed that all materials encouraged cell proliferation, particularly the higher Ti-containing scaffolds over 24–72 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Shih CJ, Chen HT, Huang LF, Lu PS, Chang HF, Chang IL. Synthesis and in vitro bioactivity of mesoporous bioactive glass scaffolds. Mater Sci Eng: C. 2010;30:657–63.

    Article  CAS  Google Scholar 

  2. Zhu Y, Wu C, Ramaswamy Y, Kockrick E, Simon P, Kaskel S, Zreiqat H. Preparation, characterization and in vitro bioactivity of mesoporous bioactive glasses (MBGs) scaffolds for bone tissue engineering. Micropor Mesopor Mater. 2008;112:494–503.

    Article  CAS  Google Scholar 

  3. Zhu Y, Kaskel S. Comparison of the in vitro bioactivity and drug release property of mesoporous bioactive glasses (MBGs) and bioactive glasses (BGs) scaffolds. Micropor Mesopor Mater. 2009;118:176–82.

    Article  CAS  Google Scholar 

  4. Chen QZ, Thompson ID, Boccaccini AR. 45S5 Bioglass®-derived glass-ceramic scaffolds for bone tissue engineering. Biomaterials. 2006;27:2414–25.

    Article  CAS  Google Scholar 

  5. Jones JR. New trends in bioactive scaffolds: the importance of nanostructure. J Eur Ceram Soc. 2009;29:1275–81.

    Article  CAS  Google Scholar 

  6. Chen Q-Z, Rezwan K, Françon V, Armitage D, Nazhat SN, Jones FH, Boccaccini AR. Surface functionalization of Bioglass®-derived porous scaffolds. Acta Biomater. 2007;3:551–62.

    Article  CAS  Google Scholar 

  7. Cao B, Zhou D, Xue M, Li G, Yang W, Long Q, Ji L. Study on surface modification of porous apatite-wollastonite bioactive glass ceramic scaffold. Appl Surf Sci. 2008;255:505–8.

    Article  CAS  Google Scholar 

  8. Charles-Harris M, del Valle S, Hentges E, Bleuet P, Lacroix D, Planell JA. Mechanical and structural characterisation of completely degradable polylactic acid/calcium phosphate glass scaffolds. Biomaterials. 2007;28:4429–38.

    Article  CAS  Google Scholar 

  9. Wren AW, Laffir FR, Kidari A, Towler MR. The structural role of titanium in Ca–Sr–Zn–Si/Ti glasses for medical applications. J Non-Crys Solids. 2010;357(3):1021–6.

    Article  Google Scholar 

  10. Lausmaa J. Surface spectroscopic characterization of titanium implant materials. J Electron Spectr Related Phenom. 1996;81:343–61.

    Article  CAS  Google Scholar 

  11. Schwager K. Titanium as a biomaterial for ossicular replacement: results after implantation in the middle ear of the rabbit. Eur Arch Otorhinolaryngol. 1998;255:396–401.

    Article  CAS  Google Scholar 

  12. Yammamoto O, Alvarez K, Kikuchi T, Fukuda M. Fabrication and characterization of oxygen-diffused titanium for biomedical applications. Acta Biomater. 2009;5(9):3605–15.

    Article  Google Scholar 

  13. Barrere F, Snel MME, van Blitterswijk CA, de Groot K, Layrolle P. Nano-scale of the nucleation and growth of calcium phosphate coating on titanium implants. Biomaterials. 2004;25:2901–10.

    Article  CAS  Google Scholar 

  14. Takadama H, Kim H-M, Kokubo T, Nakamura T. XPS study of the process of apatite formation on bioactive Ti–6Al–4V alloy in simulated body fluid. Sci Technol Adv Mater. 2001;2:389–96.

    Article  CAS  Google Scholar 

  15. Piscanec S, Ciacchi LC, Vesselli E, Comelli G, Sbaizero O, Meriani S, De Vita A. Bioactivity of TiN-coated titanium implants. Acta Mater. 2004;52:1237–45.

    Article  CAS  Google Scholar 

  16. Kokubo T, Kim H-M, Kawashita M. Novel bioactive materials with different mechanical properties. Biomaterials. 2003;24:2161–75.

    Article  CAS  Google Scholar 

  17. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity. Biomaterials. 2006;27:2907–15.

    Article  CAS  Google Scholar 

  18. Misture ST. Large-volume atmosphere-controlled diffraction furnace. Meas Sci Technol. 2003;14:1091–8.

    Article  CAS  Google Scholar 

  19. Vintersten K, Monetti C, Gertsenstein M, Zhang P, Laszlo L, Biechele S, Nagy A. Mouse in red: red fluorescent protein expression in mouse ES cells, embryos, and adult animals. Genesis. 2004;40:241–6.

    Article  CAS  Google Scholar 

  20. English K, Barry FP, Field-Corbett CP, Mahon BP. IFN-gamma and TNF-alpha differentially regulate immunomodulation by murine mesenchymal stem cells. Immunol Lett. 2007;110:91–100.

    Article  CAS  Google Scholar 

  21. Kavanagh H, Mahon BP. Allogeneic mesenchymal stem cells prevent allergic airway inflammation by inducing murine regulatory T cells. Allergy. 2011;66(4):523–31.

    Article  CAS  Google Scholar 

  22. Vargas GE, Mesones RV, Bretcanu O, López JMP, Boccaccini AR, Gorustovich A. Biocompatibility and bone mineralization potential of 45S5 Bioglass®-derived glass-ceramic scaffolds in chick embryos. Acta Biomater. 2009;5:374–80.

    Article  CAS  Google Scholar 

  23. Baino F, Verné E, Vitale-Brovarone C. 3-D high-strength glass-ceramic scaffolds containing fluoroapatite for load-bearing bone portions replacement. Mater Sci Eng: C. 2009;29:2055–62.

    Article  CAS  Google Scholar 

  24. Bellucci D, Cannillo V, Sola A. A new potassium-based bioactive glass: sintering behaviour and possible applications for bioceramic scaffolds. Ceram Int. 2011;37(1):145–57.

    Article  CAS  Google Scholar 

  25. Huang R, Pan J, Boccaccini AR, Chen QZ. A two-scale model for simultaneous sintering and crystallization of glass-ceramic scaffolds for tissue engineering. Acta Biomater. 2008;4:1095–103.

    Article  CAS  Google Scholar 

  26. Jones JR, Ehrenfried LM, Hench LL. Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials. 2006;27:964–73.

    Article  CAS  Google Scholar 

  27. Fu H, Fu Q, Zhou N, Huang W, Rahaman MN, Wang D, Liu X. In vitro evaluation of borate-based bioactive glass scaffolds prepared by a polymer foam replication method. Mater Sci Eng: C. 2009;29:2275–81.

    Article  CAS  Google Scholar 

  28. Cannillo V, Chiellini F, Fabbri P, Sola A. Production of Bioglass® 45S5—polycaprolactone composite scaffolds via salt-leaching. Comp Struct. 2010;92:1823–32.

    Article  Google Scholar 

  29. Esfahani SIR, Tavangarian F, Emadi R. Nanostructured bioactive glass coating on porous hydroxyapatite scaffold for strength enhancement. Mater Lett. 2008;62:3428–30.

    Article  Google Scholar 

  30. Ochoa I, Sanz-Herrera JA, García-Aznar JM, Doblaré M, Yunos DM, Boccaccini AR. Permeability evaluation of 45S5 Bioglass®-based scaffolds for bone tissue engineering. J Biomech. 2009;42:257–60.

    Article  Google Scholar 

  31. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27:3413–31.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. W. Wren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wren, A.W., Coughlan, A., Smale, K.E. et al. Fabrication of CaO–NaO–SiO2/TiO2 scaffolds for surgical applications. J Mater Sci: Mater Med 23, 2881–2891 (2012). https://doi.org/10.1007/s10856-012-4746-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4746-8

Keywords

Navigation