Skip to main content

Advertisement

Log in

Preferential cell response to anisotropic electro-spun fibrous scaffolds under tension-free conditions

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Anisotropic alignment of collagen fibres in musculoskeletal tissues is responsible for the resistance to mechanical loading, whilst in cornea is responsible for transparency. Herein, we evaluated the response of tenocytes, osteoblasts and corneal fibroblasts to the topographies created through electro-spinning and solvent casting. We also evaluated the influence of topography on mechanical properties. At day 14, human osteoblasts seeded on aligned orientated electro-spun mats exhibited the lowest metabolic activity (P < 0.001). At day 5 and at day 7, no significant difference was observed in metabolic activity of human corneal fibroblasts and bovine tenocytes respectively seeded on different scaffold conformations (P > 0.05). Osteoblasts and corneal fibroblasts aligned parallel to the direction of the aligned orientated electro-spun mats, whilst tenocytes aligned perpendicular to the aligned orientated electro-spun mats. Mechanical evaluation demonstrated that aligned orientated electro-spun fibres exhibited significant higher stress at break values than their random aligned counterparts (P < 0.006) and random orientated electro-spun fibres exhibited significant higher strain at break values than the aligned orientated scaffolds (P < 0.006). While maintaining fibre structure, we also developed a co-deposition method of spraying and electro-spinning, which enables the incorporation of microspheres within the three-dimensional structure of the scaffold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zeugolis DI, Chan JCY, Pandit A. Tendons: engineering of functional tissues. In: Pallua N, Suscheck CV, editors. Tissue engineering. Berlin: Springer; 2011. p. 537–72.

    Chapter  Google Scholar 

  2. Ionescu LC, Lee GC, Sennett BJ, Burdick JA, Mauck RL. An anisotropic nanofiber/microsphere composite with controlled release of biomolecules for fibrous tissue engineering. Biomaterials. 2010;31:4113–20.

    Article  CAS  Google Scholar 

  3. Pot SA, Liliensiek SJ, Myrna KE, Bentley E, Jester JV, Nealey PF, Murphy CJ. Nanoscale topography–induced modulation of fundamental cell behaviors of rabbit corneal keratocytes, fibroblasts, and myofibroblasts. Investig Ophthalmol Vis Sci. 2010;51:1373–81.

    Article  Google Scholar 

  4. Hutmacher DW. Scaffold design and fabrication technologies for engineering tissues-state of the art and future prespectives. J Biomater Sci Polym Ed. 2001;12:107–24.

    Article  CAS  Google Scholar 

  5. Khademhosseini A, Langer R, Borenstein J, Vacanti JP. Microscale technologies for tissue engineering and biology. PNAS. 2006;103:2480–7.

    Article  CAS  Google Scholar 

  6. Yang L, Fitie CFC, van der Werf KO, Bennink ML, Dijkstra PJ, Feijen J. Mechanical properties of single electrospun collagen type I fibers. Biomaterials. 2008;29:955–62.

    Article  CAS  Google Scholar 

  7. Zeugolis DI, Khew ST, Yew ESY, Ekaputra AK, Tong YW, Yung L-YL, Hutmacher DW, Sheppard C, Raghunath M. Electro-spinning of pure collagen nano-fibres – Just an expensive way to make gelatin? Biomaterials. 2008;29:2293–305.

    Article  CAS  Google Scholar 

  8. Jiang X, Lim SH, Mao H-Q, Chew SY. Current applications and future perspectives of artificial nerve conduits. Exp Neurol. 2010;223:86–101.

    Article  Google Scholar 

  9. Yao L, O’Brien N, Windebank A, Pandit A. Orienting neurite growth in electrospun fibrous neural conduits. J Biomed Mater Res B Appl Biomater. 2009;90:483–91.

    Google Scholar 

  10. Ladd MR, Lee SJ, Stitzel JD, Atala A, Yoo JJ. Co-electrospun dual scaffolding system with potential for muscle-tendon junction tissue engineering. Biomaterials. 2011;32:1549–59.

    Article  CAS  Google Scholar 

  11. Nerurkar NL, Sen S, Baker BM, Elliott DM, Mauck RL. Dynamic culture enhances stem cell infiltration and modulates extracellular matrix production on aligned electrospun nanofibrous scaffolds. Acta Biomater. 2011;7:485–91.

    Article  CAS  Google Scholar 

  12. Gupta D, Venugopal J, Mitra S, Giri Dev VR, Ramakrishna S. Nanostructured biocomposite substrates by electrospinning and electrospraying for the mineralization of osteoblasts. Biomaterials. 2009;30:2085–94.

    Article  CAS  Google Scholar 

  13. Li X, Xie J, Yuan X, Xia Y. Coating electrospun poly(ε-caprolactone) fibers with gelatin and calcium phosphate and their use as biomimetic scaffolds for bone tissue engineering. Langmuir. 2008;24:14145–50.

    Article  CAS  Google Scholar 

  14. Shields KJ, Beckman MJ, Bowlin GL, Wayne JS. Mechanical properties and cellular proliferation of electrospun collagen type II. Tissue Eng. 2004;10:1510–7.

    CAS  Google Scholar 

  15. Toyokawa N, Fujioka H, Kokubu T, Nagura I, Inui A, Sakata R, Satake M, Kaneko H, Kurosaka M. Electrospun synthetic polymer scaffold for cartilage repair without cultured cells in an animal model. Arthroscopy J Arthrosc Relat Surg. 2010;26:375–83.

    Article  Google Scholar 

  16. Stitzel J, Liu J, Lee SJ, Komura M, Berry J, Soker S, Lim G, Van Dyke M, Czerw R, Yoo JJ, Atala A. Controlled fabrication of a biological vascular substitute. Biomaterials. 2006;27:1088–94.

    Article  CAS  Google Scholar 

  17. Heydarkhan-Hagvall S, Schenke-Layland K, Dhanasopon AP, Rofail F, Smith H, Wu BM, Shemin R, Beygui RE, MacLellan WR. Three-dimensional electrospun ECM-based hybrid scaffolds for cardiovascular tissue engineering. Biomaterials. 2008;29:2907–14.

    Article  CAS  Google Scholar 

  18. Chai C, Leong KW. Biomaterials approach to expand and direct differentiation of stem cells. Mol Ther. 2007;15:467–80.

    Article  CAS  Google Scholar 

  19. Laporte LD, Shea LD. Matrices and scaffolds for DNA delivery in tissue engineering. Adv Drug Deliv Rev. 2007;59:292–307.

    Article  CAS  Google Scholar 

  20. Barras F, Pasche P, Bouche N, Aebischer P, Zurn A. Glial cell line-derived neurotrophic factor released by synthetic guidance channels promotes facial nerve regeneration in the rat. J Neurosci Res. 2002;70:746–55.

    Article  CAS  Google Scholar 

  21. Tornqvist N, Bjorklund L, Almqvist P, Wahlberg L, Stromberg I. Implantation of bioactive growth factor-secreting rods enhances fetal dopaminergic graft survival, outgrowth density, and functional recovery in a rat model of Parkinson’s disease. Exp Neurol. 2000;164:130–8.

    Article  CAS  Google Scholar 

  22. Bensadoun J, Pereira de Almeida L, Fine E, Tseng J, Deglon N, Aebischer P. Comparative study of GDNF delivery systems for the CNS: polymer rods, encapsulated cells, and lentiviral vectors. J Control Release. 2003;87:107–15.

    Article  CAS  Google Scholar 

  23. Liao I, Chew S, Leong K. Aligned core-shell nanofibers delivering bioactive proteins. Nanomedicine. 2006;1:465–71.

    Article  CAS  Google Scholar 

  24. Huang Z-M, He C-L, Yang A, Zhang Y, Han X-J, Yin J, Wu Q. Encapsulating drugs in biodegradable ultrafine fibers through co-axial electrospinning. J Biomed Mater Res Part A. 2006;77A:169–79.

    Article  CAS  Google Scholar 

  25. Mundargi RC, Babu VR, Rangaswamy V, Patel P, Aminabhavi TM. Nano/micro technologies for delivering macromolecular therapeutics using poly(d, l-lactide-co-glycolide) and its derivatives. J Control Release. 2008;125:193–209.

    Article  CAS  Google Scholar 

  26. Meng ZX, Wang YS, Ma C, Zheng W, Li L, Zheng YF. Electrospinning of PLGA/gelatin randomly-oriented and aligned nanofibers as potential scaffold in tissue engineering. Mater Sci Eng C. 2010;30:1204–10.

    Article  CAS  Google Scholar 

  27. McManus MC, Boland ED, Koo HP, Barnes CP, Pawlowski KJ, Wnek GE, Simpson DG, Bowlin GL. Mechanical properties of electrospun fibrinogen structures. Acta Biomater. 2006;2:19–28.

    Article  Google Scholar 

  28. Wang SD, Zhang YZ, Yin GB, Wang HW, Dong ZH. Fabrication of a composite vascular scaffold using electrospinning technology. Mater Sci Eng C. 2010;30:670–6.

    Article  CAS  Google Scholar 

  29. Li W-J, Cooper JAJ, Mauck RL, Tuan RS. Fabrication and characterization of six electrospun poly(a-hydroxy-ester)-based fibrous scaffolds for tissue engineering applications. Acta Biomater. 2006;2:377–85.

    Article  Google Scholar 

  30. Kato YP, Christiansen DL, Hahn RA, Shieh S-J, Goldstein JD, Silver FH. Mechanical properties of collagen fibres: a comparison of reconstituted and rat tail tendon fibres. Biomaterials. 1989;10:38–42.

    Article  CAS  Google Scholar 

  31. Huang Z-M, Zhang YZ, Ramakrishna S, Lim CT. Electrospinning and mechanical characterization of gelatin nanofibers. Polymer. 2004;45:5361–8.

    Article  CAS  Google Scholar 

  32. Shortkroff S, Spector M. Isolation and in vitro proliferation of chondrocytes, tenocytes, and ligament cells. In: Morgan JR, Yarmush ML, editors. Tissue engineering methods and protocols. Totowa: Humana Press; 1999. p. 195–203.

    Google Scholar 

  33. Builles N, Bechetoille N, Justin V, Ducerf A, Auxenfans C, Burillon C, Sergent M, Damour O. Development of an optimised culture medium for keratocytes in monolayer. Biomed Mater Eng. 2006;16:S95–104.

    CAS  Google Scholar 

  34. Torbet J, Malbouyres M, Builles N, Justin V, Roulet M, Damour O, Oldberg Å, Ruggiero F, Hulmes DJS. Orthogonal scaffold of magnetically aligned collagen lamellae for corneal stroma reconstruction. Biomaterials. 2007;28:4268–76.

    Article  CAS  Google Scholar 

  35. Xia Y. Nanomaterials at work in biomedical research. Nat Mater. 2008;7:758–60.

    Article  CAS  Google Scholar 

  36. Weiss P. Experiments on cell and axon and orientation in vitro: the role of colloidal exudates in tissue organization. J Exp Zool. 1945;100:353–86.

    Article  CAS  Google Scholar 

  37. Rosenberg M. Cell guidance by alterations in monomolecular films. Science. 1963;139:411–2.

    Article  CAS  Google Scholar 

  38. Curtis A, Varde M. Control of cell behavior: topological factors. J Natl Cancer Inst. 1964;33:15–26.

    CAS  Google Scholar 

  39. Saino E, Focarete ML, Gualandi C, Emanuele E, Cornaglia AI, Imbriani M, Visai L. Effect of electrospun fiber diameter and alignment on macrophage activation and secretion of proinflammatory cytokines and chemokines. Biomacromolecules. 2011;12:1900–11.

    Article  CAS  Google Scholar 

  40. Bauer AL, Jackson TL, Jiang Y. Topography of extracellular matrix mediates vascular morphogenesis and migration speeds in angiogenesis. PLoS Comput Biol. 2009;5:e1000445.

    Article  CAS  Google Scholar 

  41. Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT, Horwitz AR. Cell migration: integrating signals from front to back. Science. 2003;302:1704–9.

    Article  CAS  Google Scholar 

  42. Cai K, Kong T, Wang L, Liu P, Yang W, Chen C. Regulation of endothelial cells migration on poly(d, l-lactic acid) films immobilized with collagen gradients. Colloids Surf B Biointerfaces. 2010;79:291–7.

    Article  CAS  Google Scholar 

  43. Xia N, Thodeti CK, Hunt TP, Xu Q, Ho M, Whitesides GM, Westervelt R, Ingber DE. Directional control of cell motility through focal adhesion positioning and spatial control of Rac activation. FASEB J. 2008;22:1649–59.

    Article  CAS  Google Scholar 

  44. Teixeira A, Abrams G, Bertics P, Murphy C, Nealey P. Epithelial contact guidance on well-defined micro- and nanostructured substrates. J Cell Sci. 2003;116:1881–92.

    Article  CAS  Google Scholar 

  45. Teixeira A, McKie G, Foley J, Bertics P, Nealey P, Murphy C. The effect of environmental factors on the response of human corneal epithelial cells to nanoscale substrate topography. Biomaterials. 2006;27:3945–54.

    Article  CAS  Google Scholar 

  46. Yim E, Reano R, Pang S, Yee A, Chen C, Leong K. Nanopattern-induced changes in morphology and motility of smooth muscle cells. Biomaterials. 2005;26:5405–13.

    Article  CAS  Google Scholar 

  47. Curtis A, Gadegaard N, Dalby M, Riehle M, Wilkinson C, Aitchison G. Cells react to nanoscale order and symmetry in their surroundings. IEEE Trans Nanobiosci. 2004;3:61–5.

    Article  CAS  Google Scholar 

  48. Mitragotri S, Lahann J. Physical approaches to biomaterial design. Nat Mater. 2009;8:15–23.

    Article  CAS  Google Scholar 

  49. Nel AE, Madler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M. Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater. 2009;8:543–57.

    Article  CAS  Google Scholar 

  50. Holladay C, Keeney M, Greiser U, Murphy M, O’Brien T, Pandit A. A matrix reservoir for improved control of non-viral gene delivery. J Control Release. 2009;136:220–5.

    Article  CAS  Google Scholar 

  51. Setton L. Reservoir drugs. Peptide-functionalized polymer nanoparticles target and bind to articular cartilage tissue, making them promising drug-delivery vehicles. Nat Mater. 2008;7:172–4.

    Article  CAS  Google Scholar 

  52. Kopecek J. Biomaterials and drug delivery: past, present, and future. Mol Pharm. 2010;7:922–5.

    Article  CAS  Google Scholar 

  53. Attenburrow GE, Bassett DC. Compliances and failure modes of oriented chain-extended polyethylene. J Mater Sci. 1979;14:2679–87.

    Article  CAS  Google Scholar 

  54. Rigby BJ, Hirai N, Spikes JD, Eyring H. The mechanical properties of rat tail tendon. J Gen Physiol. 1959;43:265–83.

    Article  CAS  Google Scholar 

  55. Hepworth DG, Smith JP. The mechanical properties of composites manufactured from tendon fibres and pearl glue (animal glue). Compos Part A Appl Sci Manuf. 2002;33:797–803.

    Article  Google Scholar 

  56. Garcia Paez JM, Jorge Herrero E, Carrera Sanmartin A, Millan I, Cordon A, Martin Maestro M, Rocha A, Arenaz B, Castillo-Olivares JL. Comparison of the mechanical behaviors of biological tissues subjected to uniaxial tensile testing: pig, calf and ostrich pericardium sutured with Gore-Tex. Biomaterials. 2003;24:1671–9.

    Article  CAS  Google Scholar 

  57. Knight DP, Nash L, Hu XW, Haffegee J, Ho MW. In vitro formation by reverse dialysis of collagen gels containing highly oriented arrays of fibrils. J Biomed Mater Res. 1998;41:185–91.

    Article  CAS  Google Scholar 

  58. Attenburrow GE. The rheology of leather – A review. J Soc Leather Technol Chem. 1993;77:107–14.

    CAS  Google Scholar 

  59. Wang MC, Pins GD, Silver FH. Collagen fibres with improved strength for the repair of soft tissue injuries. Biomaterials. 1994;15:507–12.

    Article  CAS  Google Scholar 

  60. Fratzl P, Misof K, Zizak I, Rapp G, Amenitsch H, Bernstorff S. Fibrillar structure and mechanical properties of collagen. J Struct Biol. 1997;122:119–22.

    Article  Google Scholar 

  61. Zeugolis DI, Paul GR, Attenburrow G. Cross-linking of extruded collagen fibres – a biomimetic three-dimensional scaffold for tissue engineering applications. J Biomed Mater Res Part A. 2009;89:895–908.

    Article  CAS  Google Scholar 

  62. Pins GD, Christiansen DL, Patel R, Silver FH. Self-assembly of collagen fibers. Influence of fibrillar alignment and decorin on mechanical properties. Biophys J. 1997;73:2164–72.

    Article  CAS  Google Scholar 

  63. Cavallaro JF, Kemp PD, Kraus KH. Collagen fabrics as biomaterials. Biotechnol Bioeng. 1994;43:781–91.

    Article  CAS  Google Scholar 

  64. Gentleman E, Lay AN, Dickerson DA, Nauman EA, Livesay GA, Dee KC. Mechanical characterization of collagen fibers and scaffolds for tissue engineering. Biomaterials. 2003;24:3805–13.

    Article  CAS  Google Scholar 

  65. He W, Ma Z, Yong T, Teo WE, Ramakrishna S. Fabrication of collagen-coated biodegradable polymer nanofiber mesh and its potential for endothelial cells growth. Biomaterials. 2005;26:7606–15.

    Article  CAS  Google Scholar 

  66. He W, Yong T, Ma ZW, Inai R, Teo WE, Ramakrishna S. Biodegradable polymer nanofiber mesh to maintain functions of endothelial cells. Tissue Eng. 2006;12:2457–66.

    Article  CAS  Google Scholar 

  67. Kwon IK, Matsuda T. Co-electrospun nanofiber fabrics of poly(l-lactide-co-e-caprolactone) with type I collagen or heparin. Biomacromolecules. 2005;6:2096–105.

    Article  CAS  Google Scholar 

  68. Dunn MG, Avasarala PN, Zawadsky JP. Optimization of extruded collagen fibers for ACL reconstruction. J Biomed Mater Res. 1993;27:1545–52.

    Article  CAS  Google Scholar 

  69. Moutos FT, Freed LE, Guilak F. A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage. Nat Mater. 2007;6:162–7.

    Article  CAS  Google Scholar 

  70. Pins G, Huang E, Christiansen D, Silver F. Effects of static axial strain on the tensile properties and failure mechanisms of self-assembled collagen fibers. J Appl Polym Sci. 1997;63:1429–40.

    Article  CAS  Google Scholar 

  71. Pins GD, Silver FH. A self-assembled collagen scaffold suitable for use in soft and hard tissue replacement. Mater Sci Eng C. 1995;3:101–7.

    Article  Google Scholar 

  72. Koob TJ, Hernandez DJ. Material properties of polymerized NDGA-collagen composite fibers: development of biologically based tendon constructs. Biomaterials. 2002;23:203–12.

    Article  CAS  Google Scholar 

  73. Kato YP, Dunn MG, Zawadsky JP, Tria AJ, Silver FH. Regeneration of Achilles tendon with a collagen tendon prosthesis. results of a one-year implantation study. J Bone Joint Surg Am Vol. 1991;73:561–74.

    CAS  Google Scholar 

  74. Kato YP, Silver FH. Formation of continuous collagen fibres: evaluation of biocompatibilily and mechanical properties. Biomaterials. 1990;11:169–75.

    Article  CAS  Google Scholar 

  75. Goldstein JD, Tria AJ, Zawadsky JP, Kato KY, Christiansen D, Silver FH. Development of a reconstituted collagen tendon prosthesis. J Bone Joint Surg. 1989;71A:1183–91.

    Google Scholar 

  76. Lamers E, Frank Walboomers X, Domanski M, te Riet J, van Delft FCMJM, Luttge R, Winnubst LAJA, Gardeniers HJGE, Jansen JA. The influence of nanoscale grooved substrates on osteoblast behavior and extracellular matrix deposition. Biomaterials. 2010;31:3307–16.

    Article  CAS  Google Scholar 

  77. Prodanov L, te Riet J, Lamers E, Domanski M, Luttge R, van Loon JJWA, Jansen JA, Walboomers XF. The interaction between nanoscale surface features and mechanical loading and its effect on osteoblast-like cells behavior. Biomaterials. 2010;31:7758–65.

    Article  CAS  Google Scholar 

  78. Wang F, Li Z, Tamama K, Sen CK, Guan J. Fabrication and characterization of prosurvival growth factor releasing, anisotropic scaffolds for enhanced mesenchymal stem cell survival/growth and orientation. Biomacromolecules. 2009;10:2609–18.

    Article  CAS  Google Scholar 

  79. Abu-Rub M, McMahon S, Zeugolis DI, Windebank A, Pandit A. Spinal cord injury in vitro: modelling axon growth inhibition. Drug Discov Today. 2010;15(11–12):436–43.

    Article  CAS  Google Scholar 

  80. Schnell E, Klinkhammer K, Balzer S, Brook G, Klee D, Dalton P, Mey J. Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-[epsilon]-caprolactone and a collagen/poly-[epsilon]-caprolactone blend. Biomaterials. 2007;28:3012–25.

    Article  CAS  Google Scholar 

  81. Wray LS, Orwin EJ. Recreating the microenvironment of the native cornea for tissue engineering applications. Tissue Eng Part A. 2009;15:1463–72.

    Article  CAS  Google Scholar 

  82. Chen X, Wang Z, Qin T-W, Liu C-J, Yang Z-M. Effects of micropatterned surfaces coated with type I collagen on the proliferation and morphology of tenocytes. Appl Surf Sci. 2008;255:368–70.

    Article  CAS  Google Scholar 

  83. Riboh J, Chong AKS, Pham H, Longaker M, Jacobs C, Chang J. Optimization of flexor tendon tissue engineering with a cyclic strain bioreactor. J Hand Surg. 2008;33:1388–96.

    Article  Google Scholar 

  84. Wang B, Liu W, Zhang Y, Jiang Y, Zhang WJ, Zhou G, Cui L, Cao Y. Engineering of extensor tendon complex by an ex vivo approach. Biomaterials. 2008;29:2954–61.

    Article  CAS  Google Scholar 

  85. Cao D, Liu W, Wei X, Xu F, Cui L, Cao Y. In vitro tendon engineering with avian tenocytes and polyglycolic acids: a preliminary report. Tissue Eng. 2006;12:1369–77.

    Article  CAS  Google Scholar 

  86. Hess G, Cappiello W, Poole R, Hunter S. Prevention and treatment of overuse tendon injuries. Sports Med. 1989;8:371–84.

    Article  CAS  Google Scholar 

  87. Kannus P. Structure of the tendon connective tissue. Scand J Med Sci Sports. 2000;10:312–20.

    Article  CAS  Google Scholar 

  88. Chaplin DM, Greenlee TKJ. The development of human digital tendons. J Anat. 1975;120:253–74.

    CAS  Google Scholar 

  89. Chuen FS, Chuk CY, Ping WY, Nar WW, Kim HL, Ming CK. Immunohistochemical characterization of cells in adult human patellar tendons. J Histochem Cytochem. 2004;52:1151–7.

    Article  CAS  Google Scholar 

  90. Boote C, Dennis S, Huang Y, Quantock AJ, Meek KM. Lamellar orientation in human cornea in relation to mechanical properties. J Struct Biol. 2005;149:1–6.

    Article  Google Scholar 

  91. Canty EG, Kadler KE. Collagen fibril biosynthesis in tendon: a review and recent insights. Comp Biochem Physiol A Mol Integr Physiol. 2002;133:979–85.

    Article  CAS  Google Scholar 

  92. Osborne CS, Barbenel JC, Smith D, Savakis M, Grant MH. Investigation into the tensile properties of collagen/chondroitin-6-sulphate gels: the effect of crosslinking agents and diamines. Med Biol Eng Comput. 1998;36:129–34.

    Article  CAS  Google Scholar 

  93. Damink LHHO, Dijkstra PJ, van Luyn MJA, van Wachem PB, Nieuwenhuis P, Feijen J. Crosslinking of dermal sheep collagen using hexamethylene diisocyanate. J Mater Sci Mater Med. 1995;6:429–34.

    Article  Google Scholar 

  94. Holmes DF, Graham HK, Kadler KE. Collagen fibrils forming in developing tendon show an early and abrupt limitation in diameter at the growing tips. J Mol Biol. 1998;283:1049–58.

    Article  CAS  Google Scholar 

  95. Douglas T, Hempel U, Mietrach C, Viola M, Vigetti D, Heinemann S, Bierbaum S, Scharnweber D, Worch H. Influence of collagen-fibril-based coatings containing decorin and biglycan on osteoblast behavior. J Biomed Mater Res Part A. 2008;84A:805–16.

    Article  CAS  Google Scholar 

  96. Cao H, Xu S-Y. EDC/NHS-crosslinked type II collagen-chondroitin sulfate scaffold: characterization and in vitro evaluation. J Mater Sci Mater Med. 2008;19:567–75.

    Article  CAS  Google Scholar 

  97. Wright KT, El Masri W, Osman A, Roberts S, Chamberlain G, Ashton BA, Johnson WEB. Bone marrow stromal cells stimulate neurite outgrowth over neural proteoglycans (CSPG), myelin associated glycoprotein and Nogo-A. Biochem Biophys Res Commun. 2007;354:559–66.

    Article  CAS  Google Scholar 

  98. Yao C, Markowicz M, Pallua N, Magnus Noah E, Steffens G. The effect of cross-linking of collagen matrices on their angiogenic capability. Biomaterials. 2008;29:66–74.

    Article  CAS  Google Scholar 

  99. Fontana A, Spolaore B, Mero A, Veronese FM. Site-specific modification and PEGylation of pharmaceutical proteins mediated by transglutaminase. Adv Drug Deliv Rev. 2008;60:13–28.

    Article  CAS  Google Scholar 

  100. Shen YH, Shoichet MS, Radisic M. Vascular endothelial growth factor immobilized in collagen scaffold promotes penetration and proliferation of endothelial cells. Acta Biomater. 2008;4:477–89.

    Article  CAS  Google Scholar 

  101. Liman ST, Kara CO, Bir F, Yildirim B, Topcu S, Sahin B. The effects of estradiol and progesterone on the synthesis of collagen in tracheal surgery. Int J Pediatr Otorhinolaryngol. 2005;69:1327–31.

    Article  Google Scholar 

  102. Chen R, Mooney D. Polymeric growth factor delivery strategies for tissue engineering. Pharm Res. 2003;20:1103–12.

    Article  CAS  Google Scholar 

  103. Chen L, Apte RN, Cohen S. Characterization of PLGA microspheres for the controlled delivery of IL-1[alpha] for tumor immunotherapy. J Control Release. 1997;43:261–72.

    Article  Google Scholar 

  104. Mundargi RC, Srirangarajan S, Agnihotri SA, Patil SA, Ravindra S, Setty SB, Aminabhavi TM. Development and evaluation of novel biodegradable microspheres based on poly(d, l-lactide-co-glycolide) and poly([epsilon]-caprolactone) for controlled delivery of doxycycline in the treatment of human periodontal pocket: in vitro and in vivo studies. J Control Release. 2007;119:59–68.

    Article  CAS  Google Scholar 

  105. Chung H, Kim H, Yoon J, Park T. Heparin immobilized porous PLGA microspheres for angiogenic growth factor delivery. Pharm Res. 2006;23:1835–41.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. A. Satyam and Dr V.R. Babu for their excellent technical assistance and useful discussions. AP would like to acknowledge the Science Foundation Ireland (SFI_07/SRC/B1163) for financial support. DZ would like to acknowledge Science Foundation Ireland (SFI_09-RFP-ENM2483) and the College of Engineering for financial support. This work was also supported by Enterprise Ireland, Competence Centre for Applied Nanotechnology Project (CCIRP-2007-CCAN-0509) and by the Irish Government under the National Development Plan 2007-2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. I. Zeugolis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

English, A., Azeem, A., Gaspar, D.A. et al. Preferential cell response to anisotropic electro-spun fibrous scaffolds under tension-free conditions. J Mater Sci: Mater Med 23, 137–148 (2012). https://doi.org/10.1007/s10856-011-4471-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4471-8

Keywords

Navigation