Skip to main content
Log in

Enhanced luminescence of Ag-decorated ZnO nanorods

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ag-decorated ZnO nanorods were synthesized by thermal evaporation of a mixture of ZnO and graphite powders at 900 °C followed by wet Ag coating and thermal annealing. The ZnO nanorods had a rod-like morphology with a relatively uniform width and length. The widths and lengths of the nanorods ranged from 50 to 300 nm and up to a few hundred micrometers, respectively. The diameters of the Ag particles on the nanorods ranged from 10 to 100 nm. The dependence of the photoluminescence properties of Ag-decorated ZnO nanorods on the postannealing atmosphere was examined. Annealing resulted in an increase and decrease in the near band edge (NBE) and deep level (DL) emission intensities of Ag-coated ZnO nanorods, respectively, whereas both the NBE and DL emission intensities of uncoated ZnO nanorods were increased by annealing. The intensity ratio of NBE emission to DL emission of the Ag-coated ZnO nanorods was increased ~15-fold by hydrogen annealing. The underlying mechanism for NBE emission enhancement and DL emission suppression of Ag-coated ZnO nanorods by postannealing is discussed based on the surface plasmon resonance effect of Ag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. E.F. Schubert, J.K. Kim, Solid-state light sources getting smart. Science 308, 1274 (2005)

    Article  CAS  Google Scholar 

  2. T. Kozaki, S. Nagahama, T. Mukai, Recent progress of high-power GaN-based laser diodes. Proc. SPIE 6485, 648503 (2007)

    Article  Google Scholar 

  3. D.C. Reynolds, D.C. Look, B. Jogai, C.W. Litton, T.C. Collins, W. Harsch, G. Cantwell, Neutral-donor-bound-excition complexes in ZnO crystals. Phys. Rev. B 57, 12151 (1998)

    Article  CAS  Google Scholar 

  4. K. Vanheusden, W.L. Warren, C.H. Saeger, D.R. Tallant, J.A. Voigt, B.E. Gnade, Mechanisms behind green photoluminescence in ZnO phosphor powder. J. Appl. Phys. 79, 7983 (1996)

    Article  CAS  Google Scholar 

  5. C. Jin, H. Kim, H.Y. Ryu, H.W. Kim, C. Lee, Subwavelength optical resonant cavity-induced enhancement of the near-band-edge emission from ZnO-core/SnO2-shell nanorods. J. Phys. Chem. C 115, 8513 (2011)

    Article  CAS  Google Scholar 

  6. K. Liu, M. Sakurai, M. Liao, M. Aono, Giant improvement of the performance of ZnO nanowire photodetectors by Au nanoparticles. J. Phys. Chem. C 114, 19835 (2010)

    Article  CAS  Google Scholar 

  7. K.S. Park, Y.J. Choi, M.W. Ahn, D.W. Kim, Y.M. Sung, J.G. Park, K.J. Choi, Enhancement of field-emission properties in ZnO nanowire array by post-annealing in H2 ambient. J. Nanosci. Nanotechnol. 9, 4328 (2009)

    Article  CAS  Google Scholar 

  8. D. Qiu, P. Yu, Y. Jiang, H. Wu, Fabrication of ZnO nanoneedle/nanocolumn composite films and annealing induced improvement in their microstructural and photoluminescence characteristics. J. Mater. Sci. Technol. 22, 541 (2006)

    Google Scholar 

  9. Y. Li, R. Uchino, T. Tokizono, A. Paulsen, M. Zhong, M. Shuzo, I. Yamada, J.-J. Delaunay, Effect of hydrogen plasma treatment on the luminescence and photoconductive properties of ZnO nanowires. Mater. Res. Soc. Symp. Proc. 1206, M13-03 (2010)

    Google Scholar 

  10. A. Dev, R. Niepelt, J.P. Richters, C. Ronning, T. Voss, Stable enhancement of near-band-edge emission of ZnO nanowires by hydrogen incorporation. Nanotechnology 21, 065709 (2010)

    Article  CAS  Google Scholar 

  11. M. Stoehr, S. Juillaguet, T.M. Kyaw, J.G. Wen, Optical properties of Ga2O3 doped ZnO nanoribbons. Phys. Status Solidi C 2, 1314 (2005)

    Article  CAS  Google Scholar 

  12. N. Ohashi, T. Isigaki, N. Okada, T. Sekifuchi, I. Sakaguchi, H. Haneda, Effect of hydrogen doping on ultraviolet emission spectra of various types of ZnO. Appl. Phys. Lett. 80, 2869 (2002)

    Article  CAS  Google Scholar 

  13. Q. Kuang, Z.Y. Jiang, Z.X. Xie, S.C. Lin, Z.W. Lin, S.Y. Xie, R.B. Huang, L.S. Zheng, Tailoring the optical property by a three-dimensional epitaxial heterostructure: a case of ZnO/SnO2. J. Am. Chem. Soc. 127, 11777 (2005)

    Article  CAS  Google Scholar 

  14. D.W. Yu, X.M. Li, X.D. Gao, Microstructure and photoluminescence properties of bulk-quantity SnO2 nanowires coated with ZnO nanocrystals. Nanotechnology 16, 2770 (2005)

    Article  CAS  Google Scholar 

  15. L. Shi, Y. Xu, S. Hark, Y. Liu, S. Wang, L. Peng, K. Wong, Q. Li, Optical and electrical performance of SnO2 capped ZnO nanowire arrays. Nano Lett. 7, 3559 (2007)

    Article  CAS  Google Scholar 

  16. C.C. Lin, Y.W. Chen, M.C. Chiang, C.H. Lee, Y.L. Tung, S.Y. Chen, Photoconductive enhancement of single-layer tin oxide-coated ZnO nanowires. J. Electrochem. Soc. 157, H227 (2010)

    Article  CAS  Google Scholar 

  17. J. Li, D. Zhao, X. Meng, Z. Zhang, J. Zhang, D. Shen, Y. Lu, X. Fan, Enhanced ultraviolet emission from ZnS-coated ZnO nanowires fabricated by self-assembling method. J. Phys. Chem. B 110, 14685 (2006)

    Article  CAS  Google Scholar 

  18. S.K. Panda, A. Dev, S. Chaudhuri, Fabrication and luminescent properties of c-Axis oriented ZnO–ZnS core-shell and ZnS nanorod arrays by sulfidation of aligned ZnO nanorod arrays. J. Phys. Chem. C 111, 5039 (2007)

    Article  CAS  Google Scholar 

  19. Z. Fu, W. Dong, B. Yang, Z. Wang, Y. Yang, H. Yan, S. Zhang, J. Zuo, M. Ma, X. Liu, Effect of MgO on the enhancement of ultraviolet photoluminescence in ZnO. Solid State Comm. 138, 179 (2006)

    Article  CAS  Google Scholar 

  20. P. Shimpi, P.X. Gao, D.G. Goberman, Y. Ding, Low temperature synthesis and characterization of MgO/ZnO composite nanowire arrays. Nanotechnology 20, 125608 (2009)

    Article  Google Scholar 

  21. N.O.V. Plank, H.J. Snaith, C. Ducati, J.S. Bendall, I. Schmidt-Mende, M.E.A. Welland, A simple low temperature synthesis route for ZnO–MgO core-shell nanowires. Nanotechnology 19, 465603 (2008)

    Article  CAS  Google Scholar 

  22. J.P. Richter, T. Voss, D.S. Kim, R. Scholz, M. Zacharias, Enhanced surface-excitonic emission in ZnO/Al2O3 core-shell nanowires. Nanotechnology 19, 305202 (2008)

    Article  Google Scholar 

  23. M.W. Murphy, W.T. Zhou, J.Y.P. Ko, J.G. Zhou, F. Heigl, T.K. Sham, Optical emission of biaxial ZnO–ZnS nanoribbon heterostructures. J. Chem. Phys. 130, 084707 (2009)

    Article  CAS  Google Scholar 

  24. X. Li, Y. Zhang, X. Ren, Effects of localized surface plasmons on the photoluminescence properties of Au-coated ZnO films. Optics Express 17, 8735 (2009)

    Article  CAS  Google Scholar 

  25. A.P. Abiyasa, S.F. Yu, S.P. Lau, E.S.P. Leong, H.Y. Yang, Enhancement of ultraviolet lasing from Ag-coated highly disordered ZnO films by surface-plasmon resonance. Appl. Phys. Lett. 90, 231106 (2007)

    Article  Google Scholar 

  26. Y.J. Fang, J. Sha, Z.L. Wang, Y.T. Wan, W.W. Xia, Y.W. Wang, Behind the change of the photoluminescence property of metal-coated ZnO nanowire arrays. Appl. Phys. Lett. 98, 033103 (2011)

    Article  Google Scholar 

  27. C.C. Lin, H.P. Chen, H.C. Liao, S.Y. Chen, Enhanced luminescent and electrical properties of hydrogen-plasma ZnO nanorods grown on water-scale flexible substrates. Appl. Phys. Lett. 86, 183103 (2005)

    Article  Google Scholar 

  28. J.M. Lin, H.Y. Lin, C.L. Cheng, Y.F. Chen, Giant enhancement of bandgap emission of ZnO nanorods by platinum nanoparticles. Nanotechnology 17, 4391 (2006)

    Article  Google Scholar 

  29. C.H. Jin, H.S. Kim, W.I. Lee, C. Lee, Ultraintense luminescence in semiconducting-material-sheathed MgO nanorods. Adv. Mater. 23, 1982 (2011)

    Article  CAS  Google Scholar 

  30. C.H. Jin, H.S. Kim, C. Lee, Ultraintense short-wavelength emission from ZnO-sheathed MgO nanorods induced by subwavelength optical resonance cavity formation: verification of previous hypothesis. ACS Appl. Mater. Interfaces 4, 1262 (2012)

    Article  CAS  Google Scholar 

  31. K.W. Liu, R. Chen, G.Z. Xing, T. Wu, H.D. Sun, Photoluminescence characteristics of high quality ZnO nanowires and its enhancement by polymer covering. Appl. Phys. Lett. 96, 023111 (2010)

    Article  Google Scholar 

  32. Z.X. Zheng, Y.Y. Xi, P. Dong, H.G. Huang, J.Z. Zhou, L.L. Wu, Z.H. Lin, The enhanced photoluminescence of zinc oxide and polyaniline coaxial nanowire arrays in anodic oxide aluminium membranes. Phys. Chem. Comm. 5, 63 (2002)

    Google Scholar 

  33. C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, Drastic reduction of plasmon damping in gold nanorods. Phys. Rev. Lett. 88, 077402 (2002)

    Article  CAS  Google Scholar 

  34. K. Ozga, T. Kawaharamura, A. Ali Umar, M. Oyama, K. Nouneh, A. Slezak, S. Fujita, M. Piasecki, A.H. Reshak, I.V. Kityk, Second-order optical effects in Au nanoparticle-deposited ZnO nanocrystallite films. Nanotechnology 19, 185709 (2008)

    Google Scholar 

  35. M. Xue, Q. Guo, K. Wu, J. Guo, Initial oxidation and interfacial diffusion of Zn on faceted MgO (111) films. Langmuir 24, 8760 (2008)

    Article  CAS  Google Scholar 

  36. J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-ray photoelectron spectroscopy (Eden Prairie, Perkin-Elmer)

  37. K. Ozawa, K. Edamoto, Photoelectron spectroscopy study of K adsorption on ZnO (100). Surf. Sci. 524, 78 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2010-0020163).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chongmu Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, S., An, S., Mun, Y. et al. Enhanced luminescence of Ag-decorated ZnO nanorods. J Mater Sci: Mater Electron 24, 4906–4912 (2013). https://doi.org/10.1007/s10854-013-1496-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1496-4

Keywords

Navigation