Skip to main content
Log in

Nanoindentation for measuring individual phase mechanical properties of lead free solder alloy

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The elimination of lead from electronics due to its detrimental effects to environment and health is pushing component manufacturers to consider lead free solder alloys as the substitute. Application of such alloys requires a better understanding of their mechanical behavior at small volume size and at elevated temperatures. Such information is still lacking for both solder joints and bulk materials. In this study, nanoindentation technique was used to investigate the mechanical properties, namely the hardness and Young’s modulus, of the constituent phases in a near eutectic ternary SAC387 lead free solder alloy. The indentation-induced piling-up of the soft Sn phase was accounted for in the nanoindentation mechanical property calculations using a semi-ellipse method. The modified results agreed well with previous studies on similar alloys. Also, finite element simulation was used to estimate the effect of the complicated network between the eutectic Sn and the intermetallic phases on the mechanical properties acquired, which showed that the tested modulus of the intermetallic phase in the eutectic area exhibited considerable reduction. Vickers tests were also carried out at elevated temperatures, and the hardness of constituent phases dropped 35% from 25 °C to 85 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K.N. Tu, A.M. Gusak, M. Li, J. Appl. Phys. 93, 1335 (2003)

    Article  CAS  Google Scholar 

  2. M. Abtew, G. Selvaduray, Mater. Sci. Eng. R 27, 95 (2000)

    Article  Google Scholar 

  3. K. Zeng, K.N. Tu, Mater. Sci. Eng. R 38, 55 (2002)

    Article  Google Scholar 

  4. R.A. Goyer, Environ. Health Prospect. 100, 177 (1993)

    Article  CAS  Google Scholar 

  5. G. Lockitch, Clin. Biochem. 26, 371 (1993)

    Article  CAS  Google Scholar 

  6. I.E. Anderson, J. Mater. Sci. Mater. Electron. 18, 55 (2007)

    Article  CAS  Google Scholar 

  7. J. Liang, Z.H. Xu, X.D. Li, J. Mater. Sci. Mater. Electron. 18, 599 (2007)

    Article  CAS  Google Scholar 

  8. X. Deng, N. Chawla, K.K. Chawla, M. Koopman, Acta Mater. 52, 4291 (2004)

    Article  CAS  Google Scholar 

  9. H. Rhee, J.P. Lucas, K.N. Subramanian, J. Mater. Sci. Mater. Electron. 13, 477 (2002)

    Article  CAS  Google Scholar 

  10. W.C. Oliver, G.M. Pharr, J. Mater. Res. 7, 1564 (1992)

    Article  CAS  Google Scholar 

  11. X.D. Li, B. Bhushan, Mater. Charact. 48, 11 (2002)

    Article  CAS  Google Scholar 

  12. M. Dao, N. Chollacoop, K.J. Van Vliet, T.A. Venkatesh, S. Suresh, Acta Mater. 49, 3899 (2001)

    Article  CAS  Google Scholar 

  13. X.D. Li, H.S. Gao, C.J. Murphy, L.F. Gou, Nano Lett. 4, 1903 (2004)

    Article  CAS  Google Scholar 

  14. K.W. Moon, W.J. Boettinger, U.R. Kattner, F.S. Biancaniello, C.A. Handwerker, J. Electron. Mater. 29, 1122 (2000)

    Article  CAS  Google Scholar 

  15. Z.H. Xu, J. Agren, Mater. Sci. Eng. A 386, 262 (2004)

    Google Scholar 

  16. H. Gao, Y. Huang, W.D. Nix, J.W. Hutchinson, J. Mech. Phys. Solid 47, 1239 (1999)

    Article  Google Scholar 

  17. K.C.R. Abell, Y.L. Shen, Acta Mater. 50, 3191 (2002)

    Article  CAS  Google Scholar 

  18. D.R. Frear, J.W. Jang, J.K. Lin, C. Zhang, JOM 53, 28 (2001)

    Article  CAS  Google Scholar 

  19. M.M. El-Gahay, M.E. Mossalamy, M. Mahdy, A.A. Bahgat, J. Mater. Sci. Mater. Electron. 15, 519 (2004)

    Article  Google Scholar 

  20. H.D. Merchant, G.S. Murty, S.N. Bahadur, L.T. Dwivedi, Y. Mehrotra, J. Mater. Res. 8, 437 (1973)

    CAS  Google Scholar 

  21. G. Ghosh, J. Mater. Res. 19, 1439 (2004)

    Article  CAS  Google Scholar 

  22. K. Kese, Z.C. Li, Scripta Mater. 55, 699 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support for this study was provided by the National Science Foundation (Grant No. EPS-0296165) and the University of South Carolina Nano Center. The content of this information does not necessarily reflect the position or policy of the government and no official endorsement should be inferred.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Y., Liang, J., Xu, ZH. et al. Nanoindentation for measuring individual phase mechanical properties of lead free solder alloy. J Mater Sci: Mater Electron 19, 514–521 (2008). https://doi.org/10.1007/s10854-007-9374-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-007-9374-6

Keywords

Navigation