Skip to main content
Log in

First principles study of the behavior of hydrogen atoms in a W monovacancy

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We report on the structural, energetic, and electronic properties which explain the behavior of atomic hydrogen in a W monovacancy. Based on the density functional theory, we calculate the most stable configurations of up to eleven hydrogen atoms in a monovacancy using the SIESTA and the VASP codes. We discuss about the deformation produced in a unit cell when a vacancy is formed and subsequently filled with different number of H atoms. We estimate the formation and the binding energies as a function of hydrogen accumulation in the monovacancy, comparing to data previously reported and highlighting the origin of the disparity of the results. Our calculations show that the maximum number of hydrogen atoms that the monovacancy can trap depends on the procedure followed for its filling, being 10 when it is filled in sequentially and larger than 11 when it is filled in via simultaneous insertion of the hydrogen atoms. Finally, we study the influence of the valence charge density and charge redistribution in the formation of the most stable structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Barabash V, Akiba M, Mazul I, Ulrickson M, Vieider G (1996) Selection, development and characterization of plasma facing materials for ITER. J Nucl Mater 233:718

    Article  Google Scholar 

  2. Raffray AR, Haynes D, Najmabadi F (2003) IFE chamber walls: requirements, design options, and synergy with MFE plasma facing components. J Nucl Mater 313:23

    Article  Google Scholar 

  3. Alvarez J, Rivera A, Gonzalez-Arrabal R, Garoz D, del Rio E, Perlado J (2011) Materials research for HiPER laser fusion facilities: chamber wall, structural materials and final optics. Fusion Sci Technol 60:565–569

    Google Scholar 

  4. Ueda Y et al (2005) Hydrogen blister formation and cracking behavior for various tungsten materials. J Nucl Mater 337–339:1010–1014

    Article  Google Scholar 

  5. Causey RA, Venhaus TJ (2001) The use of tungsten in fusion reactors: a review of the hydrogen retention and migration properties. Phys Scr T 94:9

    Article  Google Scholar 

  6. Nagata S, Yamamoto S, Tokunaga K, Tuschiya B, Toh K, Shikama T (2006) Hydrogen up-take in noble gas implanted W. Nucl Instrum Meth Phys Res Sect B 242:553

    Article  Google Scholar 

  7. Tokunaga K, Fujiwara T, Ezato K, Suzuki S, Akiba M, Kurishita H, Nagata S, Tsuchiya B, Tonegawa A, Yoshida N (2009) Effects of high heat flux hydrogen and helium mixture beam irradiation on surface modification and hydrogen retention in tungsten materials. J Nucl Mater 390–391:916

    Article  Google Scholar 

  8. Ogorodnikova OV, Roth J, Mayer M (2003) Deuterium retention in tungsten in dependence of the surface conditions. J Nucl Mater 313:469

    Article  Google Scholar 

  9. Ogorodnikova OV, Sugiyama K, Schwarz-Selinger T, Dürbeck T, Balden M (2011) Ion-induced deuterium retention in tungsten coatings on carbon substrate. J Nucl Mater 419:194

    Article  Google Scholar 

  10. Gonzalez-Arrabal R, Panizo-Laiz M, Gordillo N, Tejado E, Munnik F, Rivera A, Perlado JM (2014) Hydrogen accumulation in nanostructured as compared to the coarse-grained tungsten. J Nucl Mater 453:287

    Article  Google Scholar 

  11. Liu Y, Zhou H, Zhang Y (2011) Investigating behaviors of H in a W single crystal by first-principles: from solubility to interaction with vacancy. J Alloy Compd 509:8277

    Article  Google Scholar 

  12. You Y, Kong X, Wu X, Xu Y, Fang Q, Chen J, Luo G, Liu C, Pan B, Wang Z (2013) Dissolving, trapping and detrapping mechanisms of hydrogen in bcc and fcc transition metals. AIP Adv 3:012118

    Article  Google Scholar 

  13. Ohsawa K, Goto J, Yamakami M, Yamaguchi M, Yagi M (2010) Trapping of multiple hydrogen atoms in a tungsten monovacancy from first principles. Phys Rev B 82:184117

    Article  Google Scholar 

  14. Piaggi PM, Bringa EM, Pasianot RC, Gordillo N, Panizo-Laiz M, del Río J, Gómez de Castro C, Gonzalez-Arrabal R (2015) Hydrogen diffusion and trapping in nanocrystalline tungsten. J Nucl Mater 458:233–239

    Article  Google Scholar 

  15. Heinola K, Ahlgren T, Nordlund K, Keinonen J (2010) Hydrogen interaction with point defects in tungsten. Phys Rev B 82:094102

    Article  Google Scholar 

  16. Soler J, Artacho E, Gale J, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) The SIESTA method for ab initio order-N materials simulation. J Phys 14:2745

    Google Scholar 

  17. Walkingshaw AD, Spaldin NA, Artacho E (2004) Density-functional study of charge doping in WO3. Phys Rev B 70:165110

    Article  Google Scholar 

  18. Guerrero C, Cuesta-Lopez S, Perlado JM (2014) Ab initio molecular dynamics: relationship between structural phases and the sound velocity in dense hydrogen. Europhys Lett 108:26001

    Article  Google Scholar 

  19. Troullier N, Martins J (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B 43:1993

    Article  Google Scholar 

  20. Perdew J, Ruzsinszky A, Csonka G, Vydrov O, Scuseria G, Constantin L, Zhou X, Burke K (2008) Restoring the density-gradient expansion for exchange in solids and surfaces. Phys Rev Lett 100:136406

    Article  Google Scholar 

  21. Featherson F, Neighbours J (1963) Elastic constants of tantalum, tungsten, and molybdenum. Phys Rev 130:1324

    Article  Google Scholar 

  22. Boys S, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

    Article  Google Scholar 

  23. Machado M, Ordejón P, Sanchez-Portal D and Soler JM (1999) Density functional calculations of planar DNA base-pairs. arXiv preprint physics/9908022

  24. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:R558

    Article  Google Scholar 

  25. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169

    Article  Google Scholar 

  26. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758

    Article  Google Scholar 

  27. Gonzalez C, Cerdeira M, Palacios S, Iglesias R (2015) Reduction of the repulsive interaction as origin of helium trapping inside a monovacancy in BCC metals. J Mater Sci 50:3727–3739. doi:10.1007/s10853-015-8935-y

    Google Scholar 

  28. O’Keefe MJ, Grant JT (1996) Phase transformation of sputter deposited tungsten thin films with A-15 structure. J Appl Phys 79:9134

    Article  Google Scholar 

  29. Monkhorst H, Pack J (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188

    Article  Google Scholar 

  30. Connetable D, Huez J, Andreieu E, Mijoule C (2011) First-principles study of diffusion and interactions of vacancies and hydrogen in hcp-titanium. J Phys: Condens Matter 23:405401

    Google Scholar 

  31. Becquart C, Domain C (2009) A density functional theory assessment of the clustering behaviour of He and H in tungsten. J Nucl Mater 386–388:109–111

    Article  Google Scholar 

  32. Lu G, Zhou H, Becquart C (2014) A review of modelling and simulation of hydrogen behaviour in tungsten at different scales. Nucl Fusion 54:086001

    Article  Google Scholar 

  33. Liu Y, Zhang Y, Luo G, Lu G (2009) Structure, stability and diffusion of hydrogen in tungsten: a first-principles study. J Nucl Mater 390–391:1032–1034

    Article  Google Scholar 

  34. Liu Y, Zhang Y, Zhou HB, Lu GH, Liu F, Luo GN (2009) Vacancy trapping mechanism for hydrogen bubble formation in metal. Phys Rev B 79:172103

    Article  Google Scholar 

  35. Jiang B, Wan FR, Geng WT (2010) Strong hydrogen trapping at helium in tungsten: density functional theory calculations. Phys Rev B 81:134112

    Article  Google Scholar 

  36. Wollenberger HJ, in: Cahn RW and Haasen P (Eds.) (1983) “Point defects” of “Physical Metallurgy”, third and enlarged ed., Elsevier Science Publisher BV (chapter 7)

  37. Middleburgh SC, Voskoboinikov RE, Guenette MC, Riley DP (2014) Hydrogen induced vacancy formation in tungsten. J Nucl Mater 448:270–275

    Article  Google Scholar 

  38. You Y, Kong X, Fang Q, Chen J, Luo G, Liu C, Pan B, Dai Y. Atomistic mechanism from vacancy trapped H/He atoms to initiation of bubble in W under low energy ions irradiation. arXiv:1305.0358v1 [cond-mat.mtr-sci] 2 May 2013

  39. Johnson D, Carter E (2010) Hydrogen in tungsten: absorption, diffusion, vacancy trapping, and decohesion. J Mater Res 25:315

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the computer resources and technical assistance provided by the Centro de Supercomputación y Visualización de Madrid (CeSViMa). This work has been supported by the FP7 project RADINTERFACES and the Spanish Ministry of Economy and Competitiveness projects NANO-EXTREM MAT2012-38541-C01 and RADIAFUSS ENE-2012-39787-CO6. The authors acknowledge the computer resources by the Spanish Supercomputing Network (RES), project FI-2014-3-0005, and the European PRACE-3IP project (FP7 RI-312763) resources Fionn based in Ireland at ICHEC and Supernova based in Poland at the Wroclaw University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Guerrero.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 151 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guerrero, C., González, C., Iglesias, R. et al. First principles study of the behavior of hydrogen atoms in a W monovacancy. J Mater Sci 51, 1445–1455 (2016). https://doi.org/10.1007/s10853-015-9464-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9464-4

Keywords

Navigation