Skip to main content
Log in

The effect of nanotube surface oxidation on the electrical properties of multiwall carbon nanotube/poly(vinylidene fluoride) composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Carbon nanotube/poly(vinylidene fluoride) (CNT/PVDF) composites were prepared using CNT with different oxidation and thermal treatments. The oxidation procedure leads to CNT with the most acidic characteristics that lower the degree of crystallinity of the polymer and contribute to a large increase of the dielectric constant. The surface treatments, in general, increase the percolation threshold and decrease conductivity. The surface treatments do not seem to affect CNT interactions and similar degrees of dispersion are achieved in all cases, as shown by the SEM results. The maximum value of the dielectric constant is ~630. It is demonstrated that the composite conductivity can be attributed to a hopping mechanism that is strongly affected by the surface treatment of the CNT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Charlier J-C, Blase X, Roche S (2007) Rev Mod Phys 79(2):677

    Article  CAS  Google Scholar 

  2. Moniruzzaman M, Winey KI (2006) Macromolecules 39(16):5194

    Article  CAS  Google Scholar 

  3. Baughman RH, Zakhidov AA, de Heer WA (2002) Science 297(5582):787

    Article  CAS  Google Scholar 

  4. Lovinger AJ (1982) Developments in crystalline polymers. Elsevier Applied Science, London

    Google Scholar 

  5. Nan CW, Shen Y, Ma J (2010) Annu Rev Mater Res 40(1):131

    Article  CAS  Google Scholar 

  6. Griffiths RB (1970) Phys Rev Lett 24(26):1479

    Article  Google Scholar 

  7. Bauhofer W, Kovacs JZ (2009) Compos Sci Technol 69(10):1486

    Article  CAS  Google Scholar 

  8. Seoul C, Kim Y-T, Kyung C-K (2003) J Polym Sci Part B Polym Phys 41(13):1572

    Article  CAS  Google Scholar 

  9. Wang L, Dang Z-M (2005) Appl Phys Lett 87(4):042903-3

    Google Scholar 

  10. Yao S-H, Dang Z-M, Jiang M-J, Xu H-P, Bai J (2007) Appl Phys Lett 91(21):212901

    Article  Google Scholar 

  11. Kim GH, Hong SM (2007) Mol Cryst Liq Cryst 472:161

    CAS  Google Scholar 

  12. Almasri A, Ounaies Z, Kim YS, Grunlan J (2008) Macromol Mater Eng 293(2):123

    Article  CAS  Google Scholar 

  13. Costa P, Silva J, Sencadas V, Costa CM, van Hattum FWJ, Rocha JG et al (2009) Carbon 47(11):2590

    Article  CAS  Google Scholar 

  14. Dang Z-M, Wang L, Yin Y, Zhang Q, Lei Q-Q (2007) Adv Mater 19(6):852

    Article  CAS  Google Scholar 

  15. Li Q, Xue Q, Hao L, Gao X, Zheng Q (2008) Compos Sci Technol 68(10–11):2290

    Article  CAS  Google Scholar 

  16. Chang C-M, Liu Y-L (2010) Carbon 48(4):1289

    Article  CAS  Google Scholar 

  17. Li Q, Xue QZ, Gao XL, Zheng QB (2009) Express Polym Lett 3(12):769

    Article  CAS  Google Scholar 

  18. O’Bryan G, Yang EL, Zifer T, Wally K, Skinner JL, Vance AL (2011) J Appl Polym Sci 120(3):1379

    Article  Google Scholar 

  19. Carabineiro S, Pereira M, Pereira J, Caparros C, Sencadas V, Lanceros-Mendez S (2011) Nanoscale Res Lett 6(1):302

    Article  Google Scholar 

  20. Figueiredo JL, Pereira MFR, Freitas MMA, Órfão JJM (1999) Carbon 37(9):1379

    Article  CAS  Google Scholar 

  21. Monthioux M, Smith BW, Burteaux B, Claye A, Fischer JE, Luzzi DE (2001) Carbon 39(8):1251

    Article  CAS  Google Scholar 

  22. Lopes AC, Costa CM, Tavares CJ, Neves IC, Lanceros-Mendez S (2011) J Phys Chem C 115(37):18076

    Article  CAS  Google Scholar 

  23. Sencadas V, Gregorio R, Lanceros-Méndez S (2009) J Macromol Sci Part B Phys 48(3):514

    Article  CAS  Google Scholar 

  24. Salimi A, Yousefi AA (2004) J Polym Sci Part B Polym Phys 42(18):3487

    Article  CAS  Google Scholar 

  25. Baskaran N (2002) J Appl Phys 92(2):825

    Article  CAS  Google Scholar 

  26. Silva J, Simoes R, Lanceros-Mendez S, Vaia R (2011) Europhys Lett 93(3):37005

    Article  Google Scholar 

  27. Sreenivasan S, Kalisky T, Braunstein LA, Buldyrev SV, Havlin S, Stanley HE (2004) Phys Rev E 70(4):046133

    Article  Google Scholar 

  28. Ambegaokar V, Halperin BI, Langer JS (1971) Phys Rev B 4(8):2612

    Article  Google Scholar 

  29. Connor MT, Roy S, Ezquerra TA, Baltá Calleja FJ (1998) Phys Rev B 57(4):2286

    Article  CAS  Google Scholar 

  30. Simões R, Silva JS, Vaia R, Sencadas V, Costa P, Gomes J et al (2009) Nanotechnology 20(3):035703

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Fundação para a Ciência e a Tecnologia (FCT), Portugal, for financial support through the projects PTDC/CTM/69316/2006 and NANO/NMed-SD/0156/2007), and CIENCIA 2007 program for S.A.C.; V.S., J.S. and J.N.P. also thank FCT for the SFRH/BPD/63148/2009, SFRH/BD/60623/2009 and SFRH/BD/66930/2009 grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Lanceros-Méndez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carabineiro, S.A.C., Pereira, M.F.R., Nunes-Pereira, J. et al. The effect of nanotube surface oxidation on the electrical properties of multiwall carbon nanotube/poly(vinylidene fluoride) composites. J Mater Sci 47, 8103–8111 (2012). https://doi.org/10.1007/s10853-012-6705-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6705-7

Keywords

Navigation