Skip to main content
Log in

Growth and optical properties of Sn–Si nanocomposite thin films

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The growth and optical properties of nanocomposite thin films comprising of nanocrystalline Sn and Si are reported. The nanocomposite films are produced by thermal annealing of bilayers of Sn and Si deposited on borosilicate glass substrates at various temperatures from 300 to 500 °C for 1 h in air. X-ray diffraction reveals that the as-deposited bilayers consist of nanocrystalline Sn films with a crystallite size of 30 nm, while the Si thin films are amorphous. There is onset of crystallinity in Si on annealing to 300 °C with the appearance of the (111) peak of the diamond cubic structure. The crystallite size of Si increases from 5 to 18 nm, whereas the Sn crystallite size decreases with increase in annealing temperature. Significantly, there is no evidence for any Sn–Si compound, and therefore it is concluded that the films are nanocomposites of Sn and Si. Measured spectral transmittance curves show that the films have high optical absorption in the as-deposited form which decreases on annealing to 300 °C. The films show almost 80 % transmission in the visible-near infrared region when the annealing temperature is increased to 500 °C. There is concomitant decrease in refractive index from 4.0, at 1750 nm, for the as-deposited film, to 1.88 for the film annealed at 500 °C. The optical band gap of the films increases on annealing (from 1.8 to ~2.9 eV at 500 °C). The Sn-Si nanocomposites have high refractive index, large band gap, and low optical absorption, and can therefore be used in many optical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rumpf K, Granitzer P, Poelt P (2010) J Magn Magn Mater 322:1283

    Article  CAS  Google Scholar 

  2. Sharma AK, Gupta BD (2007) J Opt A 9:180

    Article  CAS  Google Scholar 

  3. Zide JMO, Bahk JH, Singh R, Zebarjadi M, Zeng G, Lu H, Feser JP, Xu D, Singer SL, Bian ZX, Majumdar A, Bowers JE, Shakouri A, Gossard AC (2010) J Appl Phys 108:123702

    Article  Google Scholar 

  4. Ballesteros JM, Solis J, Serna R, Afonso CN (1999) Appl Phys Lett 74:2791

    Article  CAS  Google Scholar 

  5. Ahamad Mohiddon Md, Ghanashyam Krishna M (2011) J Mater Sci 46:2672. doi:10.1007/s10853-010-5124-x

    Article  Google Scholar 

  6. Mohiddon MA, Naidu KL, Krishna MG, Dalba G, Rocca F (2011) J Nanopart Res 13:5999

    Article  CAS  Google Scholar 

  7. Mahendra Kumar KU, Brahma R, Ghanashyam Krishna M, Bhatnagar AK, Dalba G (2007) J Phys 19. doi:10.1088/0953-8984/19/49/496208

  8. Kumar KUM, Ghanashyam Krishna M (2008) J. Nanomater. doi:10.1155/2008/736534

  9. Hultman L, Robertson A, Hentzell HT, Engsstrom I, Psaras PA (1987) J Appl Phys 62:3647

    Article  CAS  Google Scholar 

  10. Mohiddon MA, Naidu KL, Dalba G, Rocca F, Krishna MG (2012) Phys Status Solidi C 9:1493

    Article  Google Scholar 

  11. Oliver N, Hartmann AJ (2000) J Appl Phys 88:716

    Article  Google Scholar 

  12. Jeon M, Jeong C, Kamisako K (2010) Mater Sci Technol 26:875

    Article  CAS  Google Scholar 

  13. Emoto T, Akimoto K, Ishikawa Y, Ichimiya A, Tanikawa A (2000) Thin Solid Films 369:281

    Article  CAS  Google Scholar 

  14. Swanepoel R (1983) J Phys E 16:1214

    Article  CAS  Google Scholar 

  15. Dahmen U, Hetherington CJ, Pirouz P, Westmacott KH (1989) Scr Metall 23:269

    Article  CAS  Google Scholar 

  16. Roman LS, Valaski R, Canestraro CD, Magalha ECS, Persson C, Ahuja R, da Silva Jr EF, Pepe I, Ferreira da Silva A (2006) Appl Surf Sci 252:5361

    Article  CAS  Google Scholar 

  17. Dow JD (1972) Comments Solid State Phys 4:35

    CAS  Google Scholar 

  18. Dow JD, Redfield D (1972) Phys Rev B 5:594

    Article  Google Scholar 

  19. Hayzelden C, Batstone JL (1993) J Appl Phys 73:8279

    Article  CAS  Google Scholar 

  20. Srivastava AK, Sood KN, Kishore R, Naseem HA (2006) Electrochem Solid-State Lett 9:G219

    Article  CAS  Google Scholar 

  21. Nast O, Wenham SR (2000) J Appl Phys 88:124

    Article  CAS  Google Scholar 

  22. Leonard RT, Koch CC (1992) Nanostruct Mater 1:471

    Article  CAS  Google Scholar 

  23. Wang ZM, Wang YJ, Jeurgens LPH, Mittemeijer EJ (2008) Phys Rev Lett 100. doi:10.1103/PhysRevLett.100.125503

  24. Wang ZM, Wang YJ, Jeurgens LPH, Mittemeijer EJ (2008) Phys Rev B 77. doi:10.1103/PhysRevB.77.045424

Download references

Acknowledgements

The authors acknowledge fruitful discussions with Prof G Dalba and Prof. F Rocca of University of Trento, Mr. Ramakanth, University of Hyderabad for helping in the deposition of films and funding for this work from the DST-ITPAR program. Facilities provided by the DST sponsored Centre for Nanotechnology and UGC-CAS programmers are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Ahamad Mohiddon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohiddon, M.A., Krishna, M.G. Growth and optical properties of Sn–Si nanocomposite thin films. J Mater Sci 47, 6972–6978 (2012). https://doi.org/10.1007/s10853-012-6647-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6647-0

Keywords

Navigation