Skip to main content

Advertisement

Log in

Achieving homogeneity in a Cu–Zr alloy processed by high-pressure torsion

  • Ultrafine Grained Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A copper alloy, Cu0.1 %Zr, was subjected to severe plastic deformation at room temperature using quasi-constrained high-pressure torsion. Disks were strained through different numbers of revolutions up to a maximum of ten turns under an applied pressure of 6.0 GPa and then examined to evaluate the evolution in the Vickers microhardness, Hv, and the microstructure. The results show lower values of Hv in the center regions of the disks in the early stages of processing but a gradual evolution to a high degree of hardness homogeneity after five and ten turns. Under conditions of hardness homogeneity, the distributions of the grain boundary misorientations are essentially identical at the center and the periphery of the sample. Homogeneity was further confirmed by conducting tensile testing at elevated temperatures where similar stress–strain curves and similar elongations to failure were recorded after processing through five and ten turns of HPT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Valiev RZ, Langdon TG (2006) Prog Mater Sci 51:881

    Article  CAS  Google Scholar 

  2. Zhilyaev AP, Langdon TG (2008) Prog Mater Sci 53:893

    Article  CAS  Google Scholar 

  3. Lee S, Berbon PB, Furukawa M, Horita Z, Nemoto M, Tsenev NK, Valiev RZ, Langdon TG (1999) Mater Sci Eng A272:63

    CAS  Google Scholar 

  4. Neishi K, Horita Z, Langdon TG (2003) Mater Sci Eng A352:129

    CAS  Google Scholar 

  5. Goto M, Han SZ, Kawagoishi N, Kim SS (2008) Mater Lett 62:2832

    Article  CAS  Google Scholar 

  6. Wongsa-Ngam J, Kawasaki M, Zhao Y, Langdon TG (2011) Mater Sci Eng A528:7715

    Google Scholar 

  7. Kawasaki M, Langdon TG (2008) Mater Sci Eng A498:341

    CAS  Google Scholar 

  8. Loucif A, Figueiredo RB, Kawasaki M, Baudin T, Brisset F, Chemam R, Langdon TG (2012) J Mater Sci. doi:10.1007/s10853-012-6400-8

    Google Scholar 

  9. Dobatkin SV, Bastarache EN, Sakai G, Fujita T, Horita Z, Langdon TG (2005) Mater Sci Eng A408:141

    CAS  Google Scholar 

  10. Vorhauer A, Pippan R (2004) Scripta Mater 51:921

    Article  CAS  Google Scholar 

  11. Xu C, Horita Z, Langdon TG (2008) Acta Mater 56:5168

    Article  CAS  Google Scholar 

  12. Edalati K, Fujioka T, Horita Z (2008) Mater Sci Eng A497:168

    CAS  Google Scholar 

  13. Edalati K, Fujioka T, Horita Z (2009) Mater Trans 50:44

    Article  CAS  Google Scholar 

  14. Edalati K, Matsubara E, Horita Z (2009) Metall Mater Trans 40A:2079

    Article  CAS  Google Scholar 

  15. Čížek J, Melikhova O, Janeček M, Srba O, Barnovská Z, Procházka I, Dobatkin S (2011) Scripta Mater 65:171

    Article  Google Scholar 

  16. Loucif A, Figueiredo RB, Baudin T, Brisset F, Langdon TG (2010) Mater Sci Eng A527:4864

    CAS  Google Scholar 

  17. Kawasaki M, Alhajeri S, Xu C, Langdon TG (2011) Mater Sci Eng A529:345

    Google Scholar 

  18. Loucif A, Figueiredo RB, Baudin T, Brisset F, Chemam R, Langdon TG (2012) Mater Sci Eng A532:139

    Google Scholar 

  19. Estrin Y, Molotnikov A, Davies CHJ, Lapovok R (2008) J Mech Phys Solids 56:1186

    Article  CAS  Google Scholar 

  20. Wetscher F, Vorhauer A, Pippan R (2005) Mater Sci Eng A410–411:213

    Google Scholar 

  21. Xu C, Dobatkin SV, Horita Z, Langdon TG (2009) Mater Sci Eng A500:170

    CAS  Google Scholar 

  22. Zhilyaev AP, Lee S, Nurislamova GV, Valiev RZ, Langdon TG (2001) Scripta Mater 44:2753

    Article  CAS  Google Scholar 

  23. Zhilyaev AP, Oh-ishi K, Langdon TG, McNelley TR (2005) Mater Sci Eng A410–411:277

    Google Scholar 

  24. Xu C, Horita Z, Langdon TG (2007) Acta Mater 55:203

    Article  CAS  Google Scholar 

  25. Zhilyaev AP, McNelley TR, Langdon TG (2007) J Mater Sci 42:1517. doi:10.1007/s10853-006-0628-0

    Article  CAS  Google Scholar 

  26. Kawasaki M, Ahn B, Langdon TG (2010) J Mater Sci 45:4583. doi:10.1007/s10853-010-4420-9

    Article  CAS  Google Scholar 

  27. Xu C, Horita Z, Langdon TG (2010) Mater Trans 51:2

    Article  CAS  Google Scholar 

  28. Langdon TG (2009) J Mater Sci 44:5998. doi:10.1007/s10853-0093780-5

    Article  CAS  Google Scholar 

  29. Horita Z, Langdon TG (2005) Mater Sci Eng A410–411:422

    Google Scholar 

  30. Ungár T, Balogh L, Zhu YT, Horita Z, Xu C, Langdon TG (2007) Mater Sci Eng A444:153

    Google Scholar 

  31. Balogh L, Ungár T, Zhao Y, Zhu YT, Horita Z, Xu C, Langdon TG (2008) Acta Mater 56:809

    Article  CAS  Google Scholar 

  32. Lugo N, Llorca N, Cabrera JM, Horita Z (2008) Mater Sci Eng A477:366

    CAS  Google Scholar 

  33. Edalati K, Ito Y, Suehiro K, Horita Z (2009) Int J Mater Res 100:1668

    Article  CAS  Google Scholar 

  34. Edalati K, Horita Z (2010) Mater Trans 51:1051

    Article  CAS  Google Scholar 

  35. Edalati K, Horita Z (2010) J Mater Sci 45:4578

    Article  CAS  Google Scholar 

  36. Čížek J, Janeček M, Srba O, Kužel R, Barnovská Z, Procházka I, Dobatkin S (2011) Acta Mater 59:2322

    Article  Google Scholar 

  37. Jiang H, Zhu YT, Butt DP, Alexandrov IV, Lowe TC (2000) Mater Sci Eng A290:128

    CAS  Google Scholar 

  38. Tian YZ, Wu SD, Zhang ZF, Figueiredo RB, Gao N, Langdon TG (2011) Acta Mater 59:2783

    Article  CAS  Google Scholar 

  39. Sun PL, Zhao YH, Cooley JC, Kassner ME, Horita Z, Langdon TG, Lavernia EJ, Zhu YT (2009) Mater Sci Eng A525:83

    CAS  Google Scholar 

  40. Wang YB, Liao XZ, Zhao YH, Lavernia EJ, Ringer SP, Horita Z, Langdon TG, Zhu YT (2010) Mater Sci Eng A527:4959

    CAS  Google Scholar 

  41. An XH, Lin QY, Wu SD, Zhang ZF, Figueiredo RB, Gao N, Langdon TG (2011) Scripta Mater 64:954

    Article  CAS  Google Scholar 

  42. An XH, Lin QY, Wu SD, Zhang ZF, Figueiredo RB, Gao N, Langdon TG (2011) Phil Mag 91:3307

    Article  CAS  Google Scholar 

  43. An XH, Wu SD, Zhang ZF, Figueiredo RB, Gao N, Langdon TG (2012) Scripta Mater 66:227

    Article  CAS  Google Scholar 

  44. Kawasaki M, Horita Z, Langdon TG (2009) Mater Sci Eng A524:143

    CAS  Google Scholar 

  45. Xu C, Horita Z, Langdon TG (2011) Mater Sci Eng A528:6059

    Google Scholar 

  46. Zhao YH, Guo YZ, Wei Q, Dangelewicz AM, Xu C, Zhu YT, Langdon TG, Zhou YZ, Lavernia EJ (2008) Scripta Mater 59:627

    Article  CAS  Google Scholar 

  47. Zhao YH, Guo YZ, Wei Q, Topping TD, Dangelewicz AM, Zhu YT, Langdon TG, Lavernia EJ (2009) Mater Sci Eng A525:68

    CAS  Google Scholar 

  48. Kawasaki M, Langdon TG (2011) Mater Sci Eng A528:6140

    Google Scholar 

Download references

Acknowledgements

This study was supported in part by the National Science Foundation of the United States under Grant no. DMR-0855009 and in part by the European Research Council under ERC Grant Agreement no. 267464-SPDMETALS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jittraporn Wongsa-Ngam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wongsa-Ngam, J., Kawasaki, M. & Langdon, T.G. Achieving homogeneity in a Cu–Zr alloy processed by high-pressure torsion. J Mater Sci 47, 7782–7788 (2012). https://doi.org/10.1007/s10853-012-6587-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6587-8

Keywords

Navigation