Skip to main content
Log in

Effect of aging on microstructural development in an Al–Mg–Si alloy processed by high-pressure torsion

  • Ultrafine Grained Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Experiments were conducted to evaluate the microstructural evolution in a commercial Al-0.6 % Mg-0.4 % Si alloy processed using high-pressure torsion for up to 20 turns. Disks of the alloy were tested in two different conditions: in a solution-treated condition and after a short aging treatment at 523 K. The results show that HPT processing introduces significant grain refinement through HPT processing including a reduction in grain size from ~150 µm to ~720 nm in 1 turn of HPT. The final grain size in this alloy was ~250 nm after 20 turns. Some tensile tests were conducted to evaluate the mechanical properties of the alloy at the solution treatment temperature. The results from these tests show that aging at 523 K leads to a small increase in ductility for all tensile samples with a maximum recorded elongation of ~230 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Valiev RZ, Langdon TG (2006) Prog Mater Sci 51:881

    Article  CAS  Google Scholar 

  2. Zhilyaev AP, Langdon TG (2008) Prog Mater Sci 53:893

    Article  CAS  Google Scholar 

  3. Zhilyaev AP, Kim BK, Nurislamova GV, Baró MD, Szpunar JA, Langdon TG (2002) Scripta Mater 46:575

    Article  CAS  Google Scholar 

  4. Zhilyaev AP, Nurislamova GV, Kim BK, Baró MD, Szpunar JA, Langdon TG (2003) 51:753

  5. Zhilyaev AP, Kim BK, Szpunar JA, Baró MD, Langdon TG (2005) Mater Sci Eng A381:377

    Google Scholar 

  6. Valiev RZ, Alexandrov IV, Zhu YT, Lowe TC (2002) J Mater Res 17:5

    Article  CAS  Google Scholar 

  7. Valiev R (2004) Nature Mater 3:511

    Article  CAS  Google Scholar 

  8. Wang Y, Chen M, Ma E (2002) Nature 419:912

    Article  CAS  Google Scholar 

  9. Wang YM, Ma E, Chen MW (2002) Appl Phys Lett 80:2395

    Article  CAS  Google Scholar 

  10. Witkin D, Lee Z, Rodriguez R, Nutt S, Lavernia E (2003) Scripta Mater 49:297

    Article  CAS  Google Scholar 

  11. Zhu YT, Liao X (2004) Nature Mater 3:351

    Article  CAS  Google Scholar 

  12. Wang YM, Ma E (2004) Acta Mater 52:1699

    Article  CAS  Google Scholar 

  13. Horita Z, Ohashi K, Fujita T, Kaneko K, Langdon TG (2005) Adv Mater 17:1599

    Article  CAS  Google Scholar 

  14. Zhao YH, Liao XZ, Cheng S, Ma E, Zhu YT (2006) Adv Mater 18:2280

    Article  CAS  Google Scholar 

  15. Ma E (2006) JOM 58(4):49

    Article  CAS  Google Scholar 

  16. Zhao Y, Topping T, Bingert JF, Thornton JJ, Dangelewicz AM, Li Y, Zhu Y, Zhou Y, Lavernia EJ (2008) Adv Mater 20:3028

    Article  CAS  Google Scholar 

  17. Loucif A, Baudin T, Brisset F, Figueiredo RB, Chemam R, Langdon TG (2012) Mater Sci Forum 702–703:165

    Google Scholar 

  18. Loucif A, Figueiredo RB, Baudin T, Brisset F, Chemam R, Langdon TG (2012) Mater Sci Eng A532:139

    Google Scholar 

  19. Edalati K, Horita Z, Langdon TG (2009) Scripta Mater 60:9

    Article  CAS  Google Scholar 

  20. Serre P, Figueiredo RB, Gao N, Langdon TG (2011) Mater Sci Eng A528:3601

    CAS  Google Scholar 

  21. Kawasaki M, Langdon TG (2008) Mater Sci Eng A498:341

    CAS  Google Scholar 

  22. Dobatkin SV, Bastarache EN, Sakai G, Fujita T, Horita Z, Langdon TG (2005) Mater Sci Eng A408:141

    CAS  Google Scholar 

  23. Langdon TG (2009) J Mater Sci 44:5998. doi:10.1007/s10853-009-3780-5

    Article  CAS  Google Scholar 

  24. Kawasaki M, Horita Z, Langdon TG (2009) Mater Sci Eng A524:143

    CAS  Google Scholar 

  25. Xu C, Horita Z, Langdon TG (2011) Mater Sci Eng A528:6059

    Google Scholar 

  26. Komura S, Horita Z, Furukawa M, Nemoto M, Langdon TG (2001) Metall Mater Trans 32A:707

    CAS  Google Scholar 

Download references

Acknowledgements

This study was supported in part by the National Science Foundation of the United States under Grant No. DMR-0855009 and in part by the European Research Council under ERC Grant Agreement No. 267464-SPDMETALS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terence G. Langdon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loucif, A., Figueiredo, R.B., Kawasaki, M. et al. Effect of aging on microstructural development in an Al–Mg–Si alloy processed by high-pressure torsion. J Mater Sci 47, 7815–7820 (2012). https://doi.org/10.1007/s10853-012-6400-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6400-8

Keywords

Navigation