Skip to main content
Log in

Nanocrystalline wurtzite Si–nickel silicide composite thin films with large band gap and high resistivity

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Stabilization of wurtzite Si nanocrystals embedded in a metal/metal silicide matrix by the metal induced crystallization process is demonstrated. The process involves the growth of 50 nm thick Ni films on borosilicate glass (BSG) substrates followed by 700 nm thick amorphous Si films and annealing of this multilayered stack at 550 °C in furnace atmosphere for 1 h. The presence of wurtzite Si is established based on electron diffraction studies and is also confirmed by the Raman signature of wurtzite Si at 504 cm−1. It is shown that the growth of wurtzite Si is mediated by the formation of Nickel Silicide, as evidenced by the Raman signal at 294 cm−1. The films exhibit a band gap greater than 1.9 eV with dc resistances of the order of 10 GΩ. It is proposed that such high resistivities should make this form of Si ideal for PV and microwave device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wu BR (2000) Phys Rev B 61:5

    Article  CAS  Google Scholar 

  2. Gogotsi Y, Baek C, Kirscht F (1999) Semicond Sci Technol 14:936

    Article  CAS  Google Scholar 

  3. Dahmen U, Hetherington CJ, Pirouz P, Westmacott KH (1989) Scr Metall 23:269

    Article  CAS  Google Scholar 

  4. Kailer A, Gogotsi YG, Nickel KG (1997) J Appl Phys 81:3057

    Article  CAS  Google Scholar 

  5. Pirouz P, Chaim R, Dahmen U, Westmacott KH (1990) Acta Metall Mater 38:313

    Article  CAS  Google Scholar 

  6. Zhang Y, Iqbal Z, Vijayalakshmi S, Grebel H (1999) Appl Phys Lett 75:2758

    Article  CAS  Google Scholar 

  7. Bandet J, Despax B, Caumont M (2000) J Phys D Appl Phys 35:234

    Article  Google Scholar 

  8. Kim JH, Lee JY (1996) Mater Lett 27:275

    Article  CAS  Google Scholar 

  9. Jin Z, Moulding K, Kowk HS, Wang M (1999) IEEE Trans Electro Device 46:78

    Article  CAS  Google Scholar 

  10. Hultman L, Robertson A, Hentzell HT, Engsstrom I, Psaras PA (1987) J Appl Phys 62:3647

    Article  CAS  Google Scholar 

  11. Wang M, Wong M, Trans IEEE (2001) Electron Devices 48:1655

    Article  CAS  Google Scholar 

  12. Kumar KU, GhanashyamKrishna M (2008) J Nanomaterials 2008:1

    Article  Google Scholar 

  13. Sui Z, Leong PP, Herman IP, Higashi GS, Temkin H (1992) Appl Phys Lett 60:2086

    Article  CAS  Google Scholar 

  14. Kozlowski F, Petrova-Koch V, Kux A, Stadler W, Fleischmann A, Sigmund H (1991) J Non-Cryst Solids 137:91

    Article  Google Scholar 

  15. Kobliska RJ, Solin SA (1973) Phys Rev B 8:3799

    Article  CAS  Google Scholar 

  16. Gribb AA, Banfield JF (1997) Am Mineral 82:717

    CAS  Google Scholar 

  17. Sasaki T, Nishibe S, Harima H, Isshiki T, Yoshimoto M (2006) 14th IEEE International Conference on Advanced Thermal Processing of Semiconductors 217

  18. Rodriguez AP, Roca E, Jawhari T, Morante JR, Schreutelkamp RJ (1994) Thin Solid Films 251:45

    Article  Google Scholar 

  19. Lee PS, Mangelinck D, Pey KL, Shen ZX, Ding J, Osipowicz T, See A (2000) Solid-State Lett 3:153

    Article  CAS  Google Scholar 

  20. Zhang XW, Wong SP, Cheung WY (2002) J Appl Phy 92:3778

    Article  CAS  Google Scholar 

  21. Tan TY, Foll H, Hu SM (1981) Philos Mag A 44:127

    Article  CAS  Google Scholar 

  22. Kim JH, Lee JY (1996) Mater Lett 27:275

    Article  CAS  Google Scholar 

  23. Parsons JR, Hoelke CW (1983) Nature 30:591

    Article  Google Scholar 

  24. Parsons JR, Hoelke CW (1984) Phil Mag A 50:329

    Article  CAS  Google Scholar 

  25. Zhang SL, Wang X, Ho K, Li JJ, Diao P, Cai S (1994) J Appl Phys 76:3016

    Article  CAS  Google Scholar 

  26. Zhang DB, Hua H, Dumitrica T (2008) J Chem Phys 128:0841041

    Google Scholar 

  27. Mahendra Kumar KU, Brahma R, Ghanashyam Krishna M, Bhatnagar AK, Dalba G (2007) J Phys 19:49620801

    Google Scholar 

  28. Swanepoel R (1983) J Phps E 16:1214

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the DST-ITPAR programme for this study, especially fellowships for MAM. Facilities provided under the DST Centre for Nanotechnolgy and UGC-CAS and UPE programmes of the School of Physics are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Ahamad Mohiddon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohiddon, M.A., Krishna, M.G. Nanocrystalline wurtzite Si–nickel silicide composite thin films with large band gap and high resistivity. J Mater Sci 46, 2672–2677 (2011). https://doi.org/10.1007/s10853-010-5124-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-5124-x

Keywords

Navigation