Skip to main content
Log in

Hydrogen-bond dynamics of water confined in cyclodextrin nanosponges hydrogel

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Cyclodextrin nanosponges (CDNS) are a very promising class of cross-linked polymers, made up of cyclodextrins. CDNS swollen in aqueous solution give rise to cyclodextrin-based hydrogel in different states—gel or liquid suspension—depending on the hydration level of the system. Here we present a thorough inspection of the vibrational dynamics of these hydrogel by Raman scattering experiments, with the aim of clarifying the role played by the hydrogen-bond dynamics of water molecules confined into the nano-sized pores of nanosponges in determining the rigidity of the hydrogel network and their maximum water-holding capacity. Changes occurring in the spectral shape of the OH stretching band of water were interpreted by accounting the connectivity pattern of water molecules concurring to the gelation process. Spectral deconvolution analysis gives evidence of the existence of a characteristic cross-over hydration level associated to the rearrangement of water molecules in more cooperative, bulk-like networks as a consequence of saturation sites of water confinement of nanosponges. This interpretation is further confirmed by the inspection of the estimated collective intensities. These findings also support the existence of a specific phase diagram of the cyclodextrin nanosponges hydrogel, where the molecular structure of the cross-linking agent used during the synthesis of nanosponge plays a fundamental role in defining the nano- and microscopic properties of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Trotta, F., Zanetti, M., Cavalli, R.: Cyclodextrin-based nanosponges as drug carriers. Beilstein J. Org. Chem. 8, 2091–2099 (2012)

    Article  CAS  Google Scholar 

  2. Cavalli, R., Donalisio, M., Bisazza, A., Civra, A., Ranucci, E., Ferruti, P., Lembo, D.: Enhanced antiviral activity of acyclovir loaded into nanoparticles. Methods Enzymol. 509, 1–19 (2012)

    Article  CAS  Google Scholar 

  3. Lembo, D., Swaminathan, S., Donalisio, M., Civra, A., Pastero, L., Aquilano, D., Vavia, P., Trotta, F., Cavalli, R.: Encapsulation of acyclovir in new carboxylated cyclodextrin-based nanosponges improves the agent’s antiviral efficacy. Int. J. Pharm. 443(1–2), 262–272 (2013)

    Article  CAS  Google Scholar 

  4. Minelli, R., Cavalli, R., Ellis, L., Pettazzoni, P., Trotta, F., Ciamporcero, E., Barrera, G., Fantozzi, R., Dianzani, C., Pili, R.: Nanosponge-encapsulated camptothecin exerts anti-tumor activity in human prostate cancer cells. Eur. J. Pharm. Sci. 47(4), 686–694 (2012)

    Article  CAS  Google Scholar 

  5. Torne, S., Darandale, S., Vavia, P., Trotta, F., Cavalli, R.: Cyclodextrin-based nanosponges: effective nanocarrier for tamoxifen delivery. Pharm. Dev. Technol. 17, 1–7 (2010)

    Google Scholar 

  6. Swaminathan, S., Pastero, L., Serpe, L., Trotta, F., Vavia, P., Aquilano, D., Trotta, M., Zara, G.P., Cavalli, R.: Cyclodextrin-based nanosponges encapsulating camptothecin: physicochemical characterization, stability and cytotoxicity. Eur. J. Pharm. Biopharm. 74, 193–201 (2010)

    Article  CAS  Google Scholar 

  7. Shende, P., Deshmukh, K., Trotta, F., Caldera, F.: Novel cyclodextrin nanosponges for delivery of calcium in hyperphosphatemia. Int. J. Pharm. 456, 95–100 (2013)

    Article  CAS  Google Scholar 

  8. Darandale, S.S., Vavia, P.R.: Cyclodextrin-based nanosponges of curcumin: formulation and physicochemical characterization. J. Incl. Phenom. Macrocycl. Chem. 75, 315–322 (2013)

    Article  CAS  Google Scholar 

  9. Trotta, F.: Cyclodextrin nanosponges and their applications. In: Bilensoy, E. (ed.) Cyclodextrins in pharmaceutics, cosmetics and biomedicine: current and future industrial applications, pp. 323–342. Wiley, Hoboken (2011)

    Chapter  Google Scholar 

  10. Seglie, L., Martina, K., Devecchi, M., Roggero, C., Trotta, F., Scariot, V.: The effects of 1-MCP in cyclodextrin-based nanosponges to improve the vase life of Dianthus caryophyllus cut flowers. Postharvest Biol. Technol. 59, 200–205 (2011)

    Article  CAS  Google Scholar 

  11. Mamba, B.B., Krause, R.W., Malefetse, T.J., Gericke, G., Sithole, S.P.: Cyclodextrin nanosponges in the removal of organic matter to produce water for power generation. Water SA 34, 657–660 (2008)

    CAS  Google Scholar 

  12. Arkas, M., Allabashi, R., Tsiourvas, D., Mattausch, E.M., Perfler, R.: Organic/inorganic hybrid filters based on dendritic and cyclodextrin “nanosponges” for the removal of organic pollutants from water. Environ. Sci. Technol. 40, 2771–2777 (2006)

    Article  CAS  Google Scholar 

  13. Liang, L., De-Pei, L., Chih-Chuan, L.: Optimizing the delivery systems of chimeric RNA·DNA oligonucleotides. Eur. J. Biochem. 269, 5753–5758 (2002)

    Article  CAS  Google Scholar 

  14. Shende, P.K., Trotta, F., Gaud, R.S., Deshmukh, K., Cavalli, R., Biasizzo, M.: Influence of different techniques on formulation and comparative characterization of inclusion complexes of ASA with β-cyclodextrin and inclusion complexes of ASA with PMDA cross-linked β-cyclodextrin nanosponges. J. Incl. Phenom. Macrocycl. Chem. 74, 447–454 (2012)

    Article  CAS  Google Scholar 

  15. Trotta, F., Cavalli, R., Martina, K., Biasizzo, M., Vitillo, J., Bordiga, S., Vavia, P., Ansari, J.: Cyclodextrin nanosponges as effective gas carriers. J. Incl. Phenom. Macrocycl. Chem. 71, 189–194 (2011)

    Article  CAS  Google Scholar 

  16. Memisoglu-Bilensoy, E., Vural, I., Bochot, A., Renoir, J.M., Duchene, D., Hincal, A.A.: Tamoxifen citrate loaded amphiphilic beta-cyclodextrin nanoparticles: in vitro characterization and cytotoxicity. J. Control. Release 104, 489–496 (2005)

    Article  CAS  Google Scholar 

  17. Cavalli, R., Akhter, A., Bisazza, A., Giustetto, P., Trotta, F., Vavia, P.: Nanosponge formulations as oxygen delivery systems. Int. J. Pharm. 402, 254–257 (2010)

    Article  CAS  Google Scholar 

  18. Rossi, B., Caponi, S., Castiglione, F., Corezzi, S., Fontana, A., Giarola, M., Mariotto, G., Mele, A., Petrillo, C., Trotta, F., Viliani, G.: Networking properties of cross-linked polymeric systems probed by inelastic light scattering experiments. J. Phys. Chem. B 116(17), 5323–5327 (2012)

    Article  CAS  Google Scholar 

  19. Castiglione, F., Crupi, V., Majolino, D., Mele, A., Rossi, B., Trotta, F., Venuti, V.: Inside new materials: an experimental-numerical vibrational study of cyclodextrins-based polymers. J. Phys. Chem. B 116(43), 13133–13140 (2012)

    Article  CAS  Google Scholar 

  20. Castiglione, F., Crupi, V., Majolino, D., Mele, A., Panzeri, W., Rossi, B., Trotta, F., Venuti, V.: Vibrational dynamics and hydrogen bond properties of β-CD nanosponges: a FTIR–ATR, Raman and solid-state NMR spectroscopic study. J. Incl. Phenom. Macrocycl. Chem. 75(3), 247–254 (2013)

    Article  CAS  Google Scholar 

  21. Mele, A., Castiglione, F., Malpezzi, L., Ganazzoli, F., Raffaini, G., Trotta, F., Rossi, B., Fontana, A.: HR MAS NMR, powder XRD and Raman spectroscopy study of inclusion phenomena in βCD nanosponges. J. Incl. Phenom. Macrocycl. Chem. 69(3–4), 403–409 (2011)

    Article  CAS  Google Scholar 

  22. Castiglione, F., Crupi, V., Majolino, D., Mele, A., Rossi, B., Trotta, F., Venuti, V.: Effect of cross-linking properties on the vibrational dynamics of cyclodextrin-based polymers: an experimental–numerical study. J. Phys. Chem. B 116(27), 7952–7958 (2012)

    Article  CAS  Google Scholar 

  23. Crupi, V., Fontana, A., Giarola, M., Majolino, D., Mariotto, G., Mele, A., Melone, L., Punta, C., Rossi, B., Trotta, F., Venuti, V.: Connection between the vibrational dynamics and the cross-linking properties in cyclodextrins-based polymers. J. Raman Spectrosc. 44(10), 1457–1462 (2013)

    Article  CAS  Google Scholar 

  24. Castiglione, F., Crupi, V., Majolino, D., Mele, A., Rossi, B., Trotta, F., Venuti, V.: Vibrational spectroscopy investigation of swelling phenomena in cyclodextrin nanosponges. J. Raman Spectrosc. 44(10), 1463–1469 (2013)

    Article  CAS  Google Scholar 

  25. Crupi, V., Majolino, D., Mele, A., Rossi, B., Trotta, F., Venuti, V.: Modelling the interplay between covalent and physical interactions in cyclodextrin-based hydrogel: effect of water confinement. Soft Matter 9, 6457–6464 (2013)

    Article  CAS  Google Scholar 

  26. Liang, W., Yang, C., Zhou, D., Haneoka, H., Nishijima, M., Fukuhara, G., Mori, T., Castiglione, F., Mele, A., Caldera, F., Trotta, F., Inoue, Y.: Phase-controlled supramolecular photochirogenesis in cyclodextrin nanosponges. Chem. Commun. 49, 3510–3513 (2013)

    Article  CAS  Google Scholar 

  27. Crupi, V., Majolino, D., Mele, A., Melone, L., Punta, C., Rossi, B., Toraldo, F., Trotta, F., Venuti, V.: Direct evidence of gel–sol transition in cyclodextrin-based hydrogel as revealed by FTIR–ATR spectroscopy. Soft Matter (2014). doi:10.1039/C3SM52354C

    Google Scholar 

  28. Rossi, B., Comez, L., Fioretto, D., Lupi, L., Caponi, S., Rossi, F.: Hydrogen bonding dynamics of cyclodextrin–water solutions by depolarized light scattering. J. Raman Spectrosc. 42(6), 1479–1483 (2011)

    Article  CAS  Google Scholar 

  29. Green, J.L., Lacey, A.R., Sceats, M.G.: Spectroscopic evidence for spatial correlations of hydrogen bonds in liquid water. J. Phys. Chem. 90, 3959–3964 (1986)

    Google Scholar 

  30. Crupi, V., Magazù, S., Majolino, D., Maisano, G., Migliardo, P.: Dynamical response and H-bond effects in confined liquid water. J. Mol. Liq. 80, 133–147 (1999)

    Article  CAS  Google Scholar 

  31. Crupi, V., Longo, F., Majolino, D., Venuti, V.: Raman spectroscopy: probing dynamics of water molecules confined in nanoporous silica glasses. Eur. Phys. J. Spec. Top. 141, 61–64 (2007)

    Article  Google Scholar 

  32. Trotta, F., Tumiatti, W.: Cross-linked polymers based on cyclodextrin for removing polluting agents. Patent WO 03/085002 (2003)

  33. Trotta, F., Tumiatti, W., Cavalli, R., Zerbinati, O., Roggero, C.M., Vallero, R.: Ultrasound-assisted synthesis of cyclodextrin-based nanosponges. Patent number WO 06/002814 (2006)

  34. Trotta, F., Tumiatti, W., Cavalli, R., Roggero, C., Mognetti, B., Berta, G.: Cyclodextrin-based nanosponges as a vehicle for antitumoral drugs. Patent number WO 09/003656 A1 (2009)

  35. Goldman, N., Saykally, R.J.: Elucidating the role of many-body forces in liquid water. I. Simulations of water clusters on the VRT(ASP-W) potential surfaces. J. Chem. Phys. 120, 4777–4789 (2004)

    Article  CAS  Google Scholar 

  36. Giguère, P.A.: The bifurcated hydrogen-bond model of water and amorphous ice. J. Chem. Phys. 87, 4835–4839 (1987)

    Article  Google Scholar 

  37. Crupi, V., Interdonato, S., Longo, F., Majolino, D., Migliardo, P., Venuti, V.: A new insight on the hydrogen bonding structures of nanoconfined water: a Raman study. J. Raman Spectrosc. 39, 244–249 (2008)

    Article  CAS  Google Scholar 

  38. Freda, M., Piluso, A., Santucci, A., Sassi, P.: Transmittance Fourier transform infrared spectra of liquid water in the whole mid-infrared region: temperature dependence and structural analysis. Appl. Spectrosc. 59, 1155–1159 (2006)

    Article  Google Scholar 

  39. Schmidt, D.A., Miki, K.: Structural correlations in liquid water: a new interpretation of IR spectroscopy. J. Phys. Chem. A 111, 10119–10122 (2007)

    Article  CAS  Google Scholar 

  40. Sceats, M.G., Rice, S.A. In Franks, F. (ed) Water-A comprehensive treatise, vol. 7, chapter 2. Plenum Press, New York (1983)

Download references

Acknowledgments

We thank Dr. Fabio Toraldo for his help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Rossi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crupi, V., Fontana, A., Majolino, D. et al. Hydrogen-bond dynamics of water confined in cyclodextrin nanosponges hydrogel. J Incl Phenom Macrocycl Chem 80, 69–75 (2014). https://doi.org/10.1007/s10847-014-0387-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-014-0387-5

Keywords

Navigation