Skip to main content
Log in

Evaluation of different PAMAM dendrimers as molecular vehicle of 1,2,4-triazine N-oxide derivative with potential antitumor activity

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The interaction between a 1,2,4-triazine N-oxide derivative, that holds potential antitumor activity under hypoxic conditions, and diverse polyamidoamine (PAMAM) dendrimers were investigated with the purpose of select the most appropriate macromolecule to act as potential molecular carrier of this active compound. The results shows that dendrimers with amine terminal groups (PAMAM-AT G = 3) and dendrimers with carboxylate terminal groups (PAMAM-CT G2.5 and G4.5) produces triazine derivative hydrolysis, even in buffered medium, and are not suitable as carriers. In contrast, dendrimers with neutral end groups (PAMAM-OHT) shows stable association with the active compound, making this dendrimer a possible medium for triazine carriage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sztanke, K., Pasternak, K., Rajtar, B., Sztanke, M., Majek, M., Polz-Dacewicz, M.: Identification of antibacterial and antiviral activities of novel fused 1,2,4-triazine esters. Bioorg. Med. Chem. 15, 5480–5486 (2007)

    Article  CAS  Google Scholar 

  2. Diana, P., Barraja, P., Lauria, A., Montalbano, A., Almerico, A.M., Dattolo, G., Cirrincione, G.: Pyrrolo[2,1-c][1,2,4]triazines from 2-diazopyrroles: synthesis and antiproliferative activity. Eur. J. Med. Chem. 37, 267–272 (2002)

    Article  CAS  Google Scholar 

  3. Hay, M.P., Hicks, K.O., Pchalek, K., Lee, H.H., Blaser, A., Pruijn, F.B., Anderson, R.F., Shinde, S.S., Wilson, W.R., Denny, W.A.: Tricyclic [1,2,4]triazine 1,4-dioxides as hypoxia selective cytotoxins. J. Med. Chem. 51, 6853–6865 (2008)

    Article  CAS  Google Scholar 

  4. Patil, S.A., Otter, B.A., Klein, R.S.: 4-aza-7,9-dideazaadenosine, a new cytotoxic synthetic C-nucleoside analog of adenosine. Tetrahedron Lett. 35, 5339–5342 (1994)

    Article  CAS  Google Scholar 

  5. Hay, M.P., Pchalek, K., Pruijn, F.B., Hicks, K.O., Siim, B.G., Anderson, R.F., Shinde, S.S., Phillips, V., Denny, W.A., Wilson, W.R.: Hypoxia-selective 3-alkyl 1,2,4-benzotriazine 1,4-dioxides: the influence of hydrogen bond donors on extravascular transport and antitumor activity. J. Med. Chem. 50, 6654–6664 (2007)

    Article  CAS  Google Scholar 

  6. Imbaraj, J.J., Motten, A.G., Chignell, C.F.: Photochemical and photobiological studies of tirapazamine (SR 4233) and related quinoxaline 1,4-di-N-oxide analogues. Chem. Res. Toxicol. 16(2), 164–170 (2003)

    Article  CAS  Google Scholar 

  7. Peer, D., Karp, J.M., Hong, S., Farokhzad, O.C., Margalit, R., Langer, R.: Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2, 751–760 (2007)

    Article  CAS  Google Scholar 

  8. Kaminskas, L.M., McLeod, V.M., Porter, C.J.H., Boyd, B.J.: Association of chemotherapeutic drugs with dendrimer nanocarriers: an assessment of the merits of covalent conjugation compared to noncovalent encapsulation. Mol. Pharmaceutics 9, 355–373 (2012)

    Article  CAS  Google Scholar 

  9. Wang, Y., Grayson, S.M.: Approaches for the preparation of non-linear amphiphilic polymers and their applications to drug delivery. Adv. Drug. Deliver. Rev. 64, 852–865 (2012)

    Article  CAS  Google Scholar 

  10. Mintzer, M.A., Grinstaff, M.W.: Biomedical applications of dendrimers: a tutorial. Chem. Soc. Rev. 40, 173–190 (2011)

    Article  CAS  Google Scholar 

  11. Ionov, M., Gardikis, G., Wróbel, D., Hatziantoniou, S., Mourelatou, H., Majoral, J.P., Klajnert, B., Bryszewska, M., Demetzos, C.: Interaction of cationic phosphorus dendrimers (CPD) with charged and neutral lipid membranes. Colloids. Surf. B 82, 8–12 (2011)

    Article  CAS  Google Scholar 

  12. Quadir, M.A., Haag, R.: Biofunctional nanosystems based on dendritic polymers. J. Control Release 161, 484–495 (2012)

    Article  CAS  Google Scholar 

  13. Ciolkowski, M., Petersen, J.F., Ficker, M., Janaszewska, A., Christensen, J.B., Klajnert, B., Bryszewska, M.: Surface modification of PAMAM dendrimer improves its biocompatibility Nanomed. Nanotechnology 8, 815–817 (2012)

    CAS  Google Scholar 

  14. Szymanski, P., Markowicz, M., Mikiciuk-Olasik, E.: Nanotechnology in pharmaceutical and biomedical applications. Dendrimers Brief Rep. Rev. 6, 509–539 (2011)

    CAS  Google Scholar 

  15. Fernández, L., Sigal, E., Otero, L.: Silber., J.J., Santo, M.: Solubility improvement of anthelmintic benzimidazole carbamate by association with dendrimers. Braz. J. Chem. Eng. 28(4), 679–689 (2011)

    Article  Google Scholar 

  16. Davarakonda, B., Hill, R., Villiers, M.: The effect of PAMAM dendrimer generation size and surface functional group on the aqueous solubility of nifedipine. Int. J. Phar. 284, 133–140 (2004)

    Article  CAS  Google Scholar 

  17. Yiyun, C., Tongwen, X.: Dendrimers as Potential Drug Carriers. Part I. Solubilization of Non-Steroidal Anti-Inflammatory Drugs in the Presence of Polyamidoamine Dendrimers. Eur. J. Med. Chem. 40, 1188–1192 (2005)

    Article  CAS  Google Scholar 

  18. Hu, J., Su, Y., Zhang, H., Xu, T., Cheng, Y.: Design of interior-functionalized fully acetylated dendrimers for anticancer drug delivery. Biomaterials 32, 9950–9959 (2011)

    Article  CAS  Google Scholar 

  19. Ouyan, L., Ma, L., Jiang, B., Li, Y., He, D., Guo, L.: Synthesis of novel dendrimers having aspartate grafts and their ability to enhance the aqueous solubility of model drugs. Eur. J. Med. Chem. 45, 2705–2711 (2010)

    Article  CAS  Google Scholar 

  20. Cerecetto, H., González, M., Onetto, S., Saenz, P., Ezpeleta, O., De Ceráin, A.L., Monge, A.: 1, 2, 4-Triazine N-oxide derivatives: studies as potential hypoxic cytotoxins. Part II. Arch. Pharm. 337(5), 247–258 (2004)

    Article  CAS  Google Scholar 

  21. Cerecetto, H., González, M., Risso, M., Saenz, P., Olea-Azar, C., Bruno, A.M., Azqueta, A., De Ceráin, A.L., Monge, A.: 1, 2, 4-Triazine N-oxide derivatives: studies as potential hypoxic cytotoxins. Part III. Arch. Pharm. 337(5), 271–280 (2004)

    Article  CAS  Google Scholar 

  22. Kamlet, M.J., Abboud, J.L.M., Taft, R.W.: The Solvatochromic comparison method. 6. The π* scale of solvent polarities. J. Am. Chem. Soc. 99, 6027–6038 (1977)

    Article  CAS  Google Scholar 

  23. Dewar, M.J.S., Zoebisch, E.G., Healy, E.F., Stewart, J.J.P.: AM1: a new general purpose quantum mechanical. J. Am. Chem. Soc. 107, 3902–3909 (1985)

    Article  CAS  Google Scholar 

  24. Kamlet, M.J., Abboud, J.L.M., Abraham, M.H., Taft, R.W.: Linear solvation energy relationships. 23. A comprehensive collection of the solvatochromic parameters, π*, α, and β, and some methods for simplifying the generalized solvatochromic equation. J. Org. Chem. 48, 2877–2887 (1983)

    Article  CAS  Google Scholar 

  25. Gupta, U., Agashe, H.B., Asthana, H., Jain, N.K.: Dendrimers: novel polymeric nanoarchitectures for solubility anhancement. Biomacromolecules 7(3), 649–658 (2006)

    Article  CAS  Google Scholar 

  26. Avila-Salas, F., Sandoval, C., Caballero, J., Guiñez-Molinos, S., Santos, L.S., Cachau, R.E., González-Nilo, F.D.: Study of interaction energies between the PAMAM dendrimer and nonsteroidal anti-inflammatory drug using a distributed computational strategy and experimental analysis by ESI-MS/MS. J. Phys. Chem. B 116, 2031–2039 (2012)

    Article  CAS  Google Scholar 

  27. Maingi, V., Kumar, M.V.S., Maiti, P.K.: PAMAM dendrimer − drug interactions: effect of pH on the binding and release pattern. J. Phys. Chem. B 116, 4370–4376 (2012)

    Article  CAS  Google Scholar 

  28. Reichardt, C.: Losungmittel-Effekte in der Organischen Chenie, 2nd edn. Verlang Chemie, Weiheim (1973)

    Google Scholar 

  29. Poole, J.S., Hadad, C.M., Platz, M.S., Fredin, Z.P., Pickard, L., Guerrero, E.L., Kessler, M., Chowdhury, G., Kotandeniya, D., Gates, K.S.: Photochemical Electron Transfer Reactions of Tirapazamine Photochem. Photobiology 75(4), 339–345 (2002)

    Article  CAS  Google Scholar 

  30. Chupakhin, O.N., Kozhevnikov, V.N., Prokhorov, A.M., Kozhevnikov, D.N., Rusinov, V.L.: The amidine rearrangement in 5-amino-6-aryl-1,2,4-triazine-4-oxides initiated by hydroxylamine. Tetrahedron Lett. 41, 7379–7382 (2000)

    Article  CAS  Google Scholar 

  31. Chelmecka, M.: Complexes of polyelectrolytes with defined charge distance and different dendrimer counterions. Dissertation pdf, Mainz (2004)

  32. Kozhevnikov, D.N., Rusinov, V.L., Chupakhin, O.N.: 1,2,4-Triazine N-oxides and their annelated derivatives. Russ. Chem. Rev. 67, 633–648 (1948)

    Article  Google Scholar 

  33. D’Emanuele, A., Attwood, D.: Dendrimer–drug interactions. Adv. Drug Delivery Rev. 57, 2147–2162 (2005)

    Article  CAS  Google Scholar 

  34. Klajnert, B., Stanislawskaa, L., Bryszewska, M., Palecz, B.: Interactions between PAMAM dendrimers and bovine serum albumin. Biochim. Biophys. Acta. 1648, 115–126 (2003)

    Article  CAS  Google Scholar 

  35. Ottaviani, M.F., Montalti, F., Romanelli, M., Turro, N.J., Tomalia, D.A.: Characterization of starburst dendrimers by EPR. 4. Mn(II) as probe of interphase properties. J. Phys. Chem. 100, 11033–11042 (1996)

    Article  CAS  Google Scholar 

  36. Kleinman, M.H., Flory, J.H., Tomalia, D.A., Turro, N.J.: Effect of protonation and PAMAM dendrimer size on the complexation and dynamic mobility of 2-naphthol. J. Phys. Chem. B 104, 11472–11479 (2000)

    Article  CAS  Google Scholar 

  37. Fernández, L., Santo, M., Silber, J.J., Cerecetto, H., Gonzalez, M.: Solubilization and release proper ties of dendrimer s. Evaluation as prospective drug delivery systems. Supramol. Chem. 18(8), 633–643 (2006)

    Article  CAS  Google Scholar 

  38. Morgan, M.T., Carnahan, M.A., Immoos, C.E., Ribeiro, A.A., Finkelstein, S., Lee, S.J., Grinstaff, M.W.: Dendritic molecular capsules for hydrophobic compounds. J. Am. Chem. Soc. 125, 15485–15489 (2003)

    Article  CAS  Google Scholar 

  39. Qiao, W., Wang, B., Wang, Y., Yang, L., Zhang, Y., Shao, P.: Cancer therapy based on nanomaterials and nanocarrier systems. J. Nanomater. (2010). doi:10.1155/2010/796303

Download references

Acknowledgments

Financial support from the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-Argentina), Agencia Nacional de Promoción Científica y Tecnológica (FONCYT-Argentina), Secretaría de Ciencia y Técnica de la Universidad Nacional de Río Cuarto (SECYT-UNRC), is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciana Fernández.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dib, N., Fernández, L., Gonzalez, M. et al. Evaluation of different PAMAM dendrimers as molecular vehicle of 1,2,4-triazine N-oxide derivative with potential antitumor activity. J Incl Phenom Macrocycl Chem 79, 65–73 (2014). https://doi.org/10.1007/s10847-013-0324-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-013-0324-z

Keywords

Navigation